Skip to main content
Log in

Modulation of Alzheimer's amyloid β peptide oligomerization and toxicity by extracellular Hsp70

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder leading to dementia caused by advanced neuronal dysfunction and death. The most significant symptoms of AD are observed at late stages of the disease when interventions are most likely too late to ameliorate the condition. Currently, the predominant theory for AD is the “amyloid hypothesis,” which states that abnormally increased levels of amyloid β (Aβ) peptides result in the production of a variety of aggregates that are neurotoxic. The specific mechanisms for Aβ peptide-induced cytotoxicity have not yet been completely elucidated. However, since the majority of Aβ is released into the extracellular milieu, it is reasonable to assume that toxicity begins outside the cells and makes its way inside where it disrupts the basic cellular process resulting in cell death. There is increasing evidence that hsp, particularly Hsp70, are exported into the extracellular milieu by an active export mechanism independent of cell death. Therefore, both Aβ peptides and Hsp70 may coexist in a common environment during pathological conditions. We observed that Hsp70 affected the Aβ assembling process in vitro preventing oligomer formation. Moreover, the presence of Hsp70 reduced the Aβ peptide-induced toxicity of cultured neurons (N2A cells). These results suggest a potential mechanism for the reduction of the detrimental effects of Aβ peptides in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arispe N, Pollard HB, Rojas E (1993a) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci U S A 90(22):10573–10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arispe N, Rojas E, Pollard HB (1993b) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90(2):567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arispe N, Pollard HB, Rojas E (1996) Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc Natl Acad Sci U S A 93(4):1710–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arispe N, Diaz JC, Simakova O (2007) Abeta ion channels. Prospects for treating Alzheimer’s disease with Abeta channel blockers. Biochim Biophys Acta 1768(8):1952–1965

    Article  CAS  PubMed  Google Scholar 

  • Arispe N et al (2010) Polyhistidine peptide inhibitor of the Abeta calcium channel potently blocks the Abeta-induced calcium response in cells. Theoretical modeling suggests a cooperative binding process. Biochemistry 49(36):7847–7853

    Article  CAS  PubMed  Google Scholar 

  • Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci U S A 98(5):2375–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357

    Article  CAS  PubMed  Google Scholar 

  • Bieschke J et al (2011) Small-molecule conversion of toxic oligomers to nontoxic beta-sheet-rich amyloid fibrils. Nat Chem Biol 8(1):93–101

    Article  PubMed  Google Scholar 

  • Bitan G et al (2003) Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 100(1):330–335

    Article  CAS  PubMed  Google Scholar 

  • Bobkova NV et al (2014) Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer’s disease. J Alzheimers Dis 38(2):425–435

    PubMed  Google Scholar 

  • Bobo C et al (2017) Synthetic toxic Abeta1-42 oligomers can assemble in different morphologies. Biochim Biophys Acta 1861(5 Pt A):1168–1176

    Article  CAS  PubMed  Google Scholar 

  • Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  CAS  PubMed  Google Scholar 

  • Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10(5):333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capone R et al (2009) Amyloid-beta-induced ion flux in artificial lipid bilayers and neuronal cells: resolving a controversy. Neurotox Res 16(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow AM et al (2014) Localization of heat shock proteins in cerebral cortical cultures following induction by celastrol. Cell Stress Chaperones 19(6):845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connelly L et al (2012) Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer’s beta-amyloid peptide: relevance to the ion channel mechanism of AD pathology. J Phys Chem B 116(5):1728–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19(R1):R12–R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings J et al (2017) Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement 3:367–384

    Google Scholar 

  • Dahlgren KN et al (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277(35):32046–32053

    Article  CAS  PubMed  Google Scholar 

  • De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11(1):1–12

    Article  PubMed  Google Scholar 

  • De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the stress observation system: a form of communication during injury, infection, and cell damage. Cell Stress Chaperones 16(3):235–249

  • De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40(4):239–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorosh L, Stepanova M (2016) Probing oligomerization of amyloid beta peptide in silico. Mol BioSyst 13(1):165–182

    Article  CAS  PubMed  Google Scholar 

  • Durell SR et al (1994) Theoretical models of the ion channel structure of amyloid beta-protein. Biophys J 67(6):2137–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans CG, Wisen S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J Biol Chem 281(44):33182–33191

    Article  CAS  PubMed  Google Scholar 

  • Faassen AE et al (1989) Diminished heat-shock protein synthesis following mitogen stimulation of lymphocytes from aged donors. Exp Cell Res 183(2):326–334

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Funez P et al (2016) Holdase activity of secreted Hsp70 masks amyloid-beta42 neurotoxicity in Drosophila. Proc Natl Acad Sci U S A 113(35):E5212–E5221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L et al (2017) Comparison of neurotoxicity of different aggregated forms of Abeta40, Abeta42 and Abeta43 in cell cultures. J Pept Sci 23(3):245–251

    Article  CAS  PubMed  Google Scholar 

  • Gastpar R et al (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65(12):5238–5247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzhova I et al (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914(1–2):66–73

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    Article  CAS  PubMed  Google Scholar 

  • Harper JD, Lieber CM, Lansbury PT Jr (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem Biol 4(12):951–959

    Article  CAS  PubMed  Google Scholar 

  • Heydari AR, Conrad CC, Richardson A (1995) Expression of heat shock genes in hepatocytes is affected by age and food restriction in rats. J Nutr 125(3):410–418

    CAS  PubMed  Google Scholar 

  • Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T et al (2011) Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci 31(14):5225–5234

    Article  CAS  PubMed  Google Scholar 

  • Jang H et al (2010) beta-Barrel topology of Alzheimer’s beta-amyloid ion channels. J Mol Biol 404(5):917–934

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111

    Article  CAS  PubMed  Google Scholar 

  • Kanekiyo T et al (2013) Neuronal clearance of amyloid-beta by endocytic receptor LRP1. J Neurosci 33(49):19276–19283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara M, Arispe N, Kuroda Y, Rojas E (1997) Alzheimer’s disease amyloid beta-protein forms Zn(2+)-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys J 73(1):67–75

  • King M et al (2009) The small heat shock protein Hsp27 protects cortical neurons against the toxic effects of beta-amyloid peptide. J Neurosci Res 87(14):3161–3175

    Article  CAS  PubMed  Google Scholar 

  • Kirby BA et al (1994) Heat shock proteins protect against stress-related phosphorylation of tau in neuronal PC12 cells that have acquired thermotolerance. J Neurosci 14(9):5687–5693

    CAS  PubMed  Google Scholar 

  • Kirkitadze MD, Bitan G, Teplow DB (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69(5):567–577

    Article  CAS  PubMed  Google Scholar 

  • Kotler SA et al (2014) Differences between amyloid-beta aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer’s disease. Chem Soc Rev 43(19):6692–6700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert MP et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M et al (2016) Conformational changes of Abeta (1-42) monomers in different solvents. J Mol Graph Model 65:8–14

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Arispe NJ (2015) Single-cell screening of cytosolic [Ca(2+)] reveals cell-selective action by the Alzheimer’s Abeta peptide ion channel. Cell Stress Chaperones 20(2):333–342

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Liu CC et al (2017) Astrocytic LRP1 mediates brain Abeta clearance and impacts amyloid deposition. J Neurosci 37(15):4023–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobello K et al (2012) Targeting beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int J Alzheimers Dis 2012:628070

    PubMed  PubMed Central  Google Scholar 

  • Mansson C et al (2014) Interaction of the molecular chaperone DNAJB6 with growing amyloid-beta 42 (Abeta42) aggregates leads to sub-stoichiometric inhibition of amyloid formation. J Biol Chem 289(45):31066–31076

    Article  PubMed  PubMed Central  Google Scholar 

  • Marini AM et al (1990) 70-kilodalton heat shock protein induction in cerebellar astrocytes and cerebellar granule cells in vitro: comparison with immunocytochemical localization after hyperthermia in vivo. J Neurochem 54(5):1509–1516

    Article  CAS  PubMed  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Nitta A et al (1994) beta-Amyloid protein-induced Alzheimer’s disease animal model. Neurosci Lett 170(1):63–66

    Article  CAS  PubMed  Google Scholar 

  • Njemini R et al (2011a) Circulating heat shock protein 70 in health, aging and disease. BMC Immunol 12:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njemini R et al (2011b) Circulating heat shock protein 70 (Hsp70) in elderly members of a rural population from Cameroon: association with infection and nutrition. Arch Gerontol Geriatr 53(3):359–363

    Article  CAS  PubMed  Google Scholar 

  • Ojha J et al (2011) Sequestration of toxic oligomers by HspB1 as a cytoprotective mechanism. Mol Cell Biol 31(15):3146–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahlavani MA et al (1995) The expression of heat shock protein 70 decreases with age in lymphocytes from rats and rhesus monkeys. Exp Cell Res 218(1):310–318

    Article  CAS  PubMed  Google Scholar 

  • Rea IM, McNerlan S, Pockley AG (2001) Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontol 36(2):341–352

    Article  CAS  PubMed  Google Scholar 

  • Roche J et al (2016) Monomeric Abeta(1-40) and Abeta(1-42) peptides in solution adopt very similar Ramachandran map distributions that closely resemble random coil. Biochemistry 55(5):762–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roychaudhuri R et al (2009) Amyloid beta-protein assembly and Alzheimer disease. J Biol Chem 284(8):4749–4753

    Article  CAS  PubMed  Google Scholar 

  • Sciacca MF et al (2012) Two-step mechanism of membrane disruption by Abeta through membrane fragmentation and pore formation. Biophys J 103(4):702–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo J et al (2017) An infrared spectroscopy approach to follow beta-sheet formation in peptide amyloid assemblies. Nat Chem 9(1):39–44

    CAS  PubMed  Google Scholar 

  • Shafrir Y et al (2010a) Beta-barrel models of soluble amyloid beta oligomers and annular protofibrils. Proteins 78(16):3458–3472

  • Shafrir Y et al (2010b) Models of membrane-bound Alzheimer’s Abeta peptide assemblies. Proteins 78(16):3473–3487

  • Shibata M et al (2000) Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106(12):1489–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoji M et al (2001) The levels of cerebrospinal fluid Abeta40 and Abeta42(43) are regulated age-dependently. Neurobiol Aging 22(2):209–215

    Article  CAS  PubMed  Google Scholar 

  • Simakova O, Arispe NJ (2006) Early and late cytotoxic effects of external application of the Alzheimer’s Abeta result from the initial formation and function of Abeta ion channels. Biochemistry 45(18):5907–5915

    Article  CAS  PubMed  Google Scholar 

  • Simakova O, Arispe NJ (2007) The cell-selective neurotoxicity of the Alzheimer’s Abeta peptide is determined by surface phosphatidylserine and cytosolic ATP levels. Membrane binding is required for Abeta toxicity. J Neurosci 27(50):13719–13729

    Article  CAS  PubMed  Google Scholar 

  • Sprang GK, Brown IR (1987) Selective induction of a heat shock gene in fibre tracts and cerebellar neurons of the rabbit brain detected by in situ hybridization. Brain Res 427(1):89–93

    Article  CAS  PubMed  Google Scholar 

  • Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283(44):29615–29619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth ME et al (2013) Overexpression of Hsp27 ameliorates symptoms of Alzheimer’s disease in APP/PS1 mice. Cell Stress Chaperones 18(6):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LN et al (2012) The toxicity of amyloid beta oligomers. Int J Mol Sci 13(6):7303–7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Barbara Rho for her excellent editing of the manuscript.

Funding

This work was supported by National Institutes of Health (NIH) Grant R01 GM11447 and UC San Diego Academic Senate grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De Maio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, I., Capone, R., Cauvi, D.M. et al. Modulation of Alzheimer's amyloid β peptide oligomerization and toxicity by extracellular Hsp70. Cell Stress and Chaperones 23, 269–279 (2018). https://doi.org/10.1007/s12192-017-0839-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-017-0839-0

Keywords

Navigation