Skip to main content
Log in

HOP expression is regulated by p53 and RAS and characteristic of a cancer gene signature

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The Hsp70/Hsp90 organising protein (HOP) is a co-chaperone essential for client protein transfer from Hsp70 to Hsp90 within the Hsp90 chaperone machine. Although HOP is upregulated in various cancers, there is limited information from in vitro studies on how HOP expression is regulated in cancer. The main objective of this study was to identify the HOP promoter and investigate its activity in cancerous cells. Bioinformatic analysis of the −2500 to +16 bp region of the HOP gene identified a large CpG island and a range of putative cis-elements. Many of the cis-elements were potentially bound by transcription factors which are activated by oncogenic pathways. Luciferase reporter assays demonstrated that the upstream region of the HOP gene contains an active promoter in vitro. Truncation of this region suggested that the core HOP promoter region was −855 to +16 bp. HOP promoter activity was highest in Hs578T, HEK293T and SV40- transformed MEF1 cell lines which expressed mutant or inactive p53. In a mutant p53 background, expression of wild-type p53 led to a reduction in promoter activity, while inhibition of wild-type p53 in HeLa cells increased HOP promoter activity. Additionally, in Hs578T and HEK293T cell lines containing inactive p53, expression of HRAS increased HOP promoter activity. However, HRAS activation of the HOP promoter was inhibited by p53 overexpression. These findings suggest for the first time that HOP expression in cancer may be regulated by both RAS activation and p53 inhibition. Taken together, these data suggest that HOP may be part of the cancer gene signature induced by a combination of mutant p53 and mutated RAS that is associated with cellular transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahuja D, Sáenz-Robles MT, Pipas JM (2005) SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24:7729–7745

    Article  CAS  PubMed  Google Scholar 

  • Alvira S, Cuéllar J, Röhl A, Yamamoto S, Itoh H, Alfonso C et al (2014) Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Nat Commun 5:5484

    Article  PubMed  Google Scholar 

  • Anish R, Hossain MB, Jacobson RH, Takada S (2009) Characterization of transcription from TATA-less promoters: identification of a new core promoter element XCPE2 and analysis of factor requirements. PLoS One 4:e5103

    Article  PubMed  PubMed Central  Google Scholar 

  • Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A et al (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91:355–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • BIOBASE - Biological Databases (2001) MATCH

  • Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV (2006) A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev 20:236–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    CAS  PubMed  Google Scholar 

  • Buganim Y, Solomon H, Rais Y, Kistner D, Nachmany I, Brait M et al (2010) p53 Regulates the Ras circuit to inhibit the expression of a cancer-related gene signature by various molecular pathways. Cancer Res 70:2274–2284

    Article  CAS  PubMed  Google Scholar 

  • Caplan AJ (2003) What is a co-chaperone? Cell Stress Chaperones 8:105–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho da Fonseca AC, Wang H, Fan H, Chen X, Zhang I, Zhang L et al (2014) Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages. J Neuroimmunol 274:71–77

    Article  CAS  PubMed  Google Scholar 

  • Chao A, Lai C-H, Tsai C-L, Hsueh S, Hsueh C, Lin C-Y et al (2013) Tumor stress-induced phosphoprotein1 (STIP1) as a prognostic biomarker in ovarian cancer. PLoS One 8:e57084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damico R, Simms T, Kim BS, Tekeste Z, Amankwan H, Damarla M et al (2011) p53 mediates cigarette smoke-induced apoptosis of pulmonary endothelial cells: inhibitory effects of macrophage migration inhibitor factor. Am J Respir Cell Mol Biol 44:323–332

    Article  CAS  PubMed  Google Scholar 

  • Eckert LB, Repasky GA, Ulkü AS, McFall A, Zhou H, Sartor CI et al (2004) Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res 64:4585–4592

    Article  CAS  PubMed  Google Scholar 

  • Erlich RB, Kahn SA, Lima FRS, Muras AG, Martins RAP, Linden R et al (2007) STI1 promotes glioma proliferation through MAPK and PI3K pathways. Glia 55:1690–1698

    Article  PubMed  Google Scholar 

  • Farré D, Roset R, Huerta M, Adsuara JE, Roselló L, Albà MM et al (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31:3651–3653

    Article  PubMed  PubMed Central  Google Scholar 

  • Forafonov F, Toogun OA, Grad I, Suslova E, Freeman BC, Picard D (2008) p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol Cell Biol 28:3446–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frith MC, Hansen U, Weng Z (2001) Detection of cis-element clusters in higher eukaryotic DNA. Bioinformatics (Oxford, England) 17:878–889

    Article  CAS  Google Scholar 

  • Gjoerup O, Zaveri D, Roberts TM (2001) Induction of p53-independent apoptosis by simian virus 40 small t antigen. J Virol 75:9142–9155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV et al (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26:362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández MP, Sullivan WP, Toft DO (2002) The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 277:38294–38304

    Article  PubMed  Google Scholar 

  • Holmes JL, Sharp SY, Hobbs S, Workman P (2008) Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 68:1188–1197

    Article  PubMed  Google Scholar 

  • Horibe T, Kohno M, Haramoto M, Ohara K, Kawakami K (2011) Designed hybrid TPR peptide targeting Hsp90 as a novel anticancer agent. J Transl Med 9:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha KK, Banga S, Palejwala V, Ozer HL (1998) SV40-Mediated immortalization. Exp Cell Res 245:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  PubMed  Google Scholar 

  • Kovach JS, McGovern RM, Cassady JD, Swanson SK, Wold LE, Vogelstein B et al (1991) Direct sequencing from touch preparations of human carcinomas: analysis of p53 mutations in breast carcinomas. J Natl Cancer Inst 83:1004–1009

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Yamamoto S, Itoh E, Abe Y, Nakamura A, Izumi Y et al (2010) Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress Chaperones 15:1003–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun X, Wang Z, Chen L, Li D, Zhou J et al (2012) Regulation of vascular endothelial cell polarization and migration by Hsp70/Hsp90-organizing protein. PLoS One 7:e36389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L-C, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Liu GE, Weirauch MT, Tassell CPV, Li RW, Sonstegard TS, Matukumalli LK et al (2008) Identification of conserved regulatory elements in mammalian promoter regions: a case study using the PCK1 promoter. Genomics, proteomics & bioinformatics 6:129–143

    Article  CAS  Google Scholar 

  • Mao B, Zhang Z, Wang G (2015) BTG2: a rising star of tumor suppressors (review). Int J Oncol 46:459–464

    CAS  PubMed  Google Scholar 

  • McFall A, Ulkü A, Lambert QT, Kusa A, Rogers-Graham K, Der CJ (2001) Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase. Mol Cell Biol 21:5488–5499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334

    Article  CAS  PubMed  Google Scholar 

  • Murphy PJM, Galigniana MD, Morishima Y, Harrell JM, Kwok RPS, Ljungman M et al (2004) Pifithrin- inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. J Biol Chem 279:30195–30201

    Article  CAS  PubMed  Google Scholar 

  • Pimienta G, Herbert KM, Regan L (2011) A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines. Mol Pharm 8:2252–2261

    Article  CAS  PubMed  Google Scholar 

  • Röhl A, Wengler D, Madl T, Lagleder S, Tippel F, Herrmann M et al (2015) Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nat Commun 6:6655

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruckova E, Muller P, Nenutil R, Vojtesek B (2012) Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperone system in cancer. Cellular & Molecular Biology Letters 17:446–458

    Article  CAS  Google Scholar 

  • Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8:424–436

    Article  CAS  PubMed  Google Scholar 

  • Sepp-Lorenzino L, Rosen N (1998) A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild type tumor cells. J Biol Chem 273:20243–20251

    Article  CAS  PubMed  Google Scholar 

  • Siebring-van Olst E, Vermeulen C, de Menezes RX, Howell M, Smit EF, van Beusechem VW (2012) Affordable luciferase reporter assay for cell-based high-throughput screening. J Biomol Screen 18:453–461

    Article  PubMed  Google Scholar 

  • Smith JR, Clarke PA, de Billy E, Workman P (2009) Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 28:157–169

    Article  CAS  PubMed  Google Scholar 

  • Solomon H, Buganim Y, Kogan-Sakin I, Pomeraniec L, Assia Y, Madar S et al (2012) Various p53 mutant proteins differently regulate the Ras circuit to induce a cancer-related gene signature. J Cell Sci 125:3144–3152

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Masison DC (2005) Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1). J Biol Chem 280:34178–34185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  Google Scholar 

  • Walsh N, Larkin A, Swan N, Conlon K, Dowling P, McDermott R et al (2011) RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Lett 306:180–189

    Article  CAS  PubMed  Google Scholar 

  • Walsh N, O’Donovan N, Kennedy S, Henry M, Meleady P, Clynes M et al (2009) Identification of pancreatic cancer invasion-related proteins by proteomic analysis. Proteome Sci 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T-H, Chao AA-S, Tsai C-L, Chang C-L, Chen S-H, Lee Y-S et al (2010a) Stress-induced phosphoprotein 1 as a secreted biomarker for human ovarian cancer promotes cancer cell proliferation. Molecular & cellular proteomics: MCP 9:1873–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T-H, Chao A, Tsai C-L, Chang C-L, Chen S-H, Lee Y-S et al (2010b) Stress-induced phosphoprotein 1 as a secreted biomarker for human ovarian cancer promotes cancer cell proliferation. Mol Cell Proteomics 9:1873–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmer T, Contu L, Blatch GL, Edkins AL (2013) Knockdown of Hop downregulates RhoC expression, and decreases pseudopodia formation and migration in cancer cell lines. Cancer Lett 328:252–260

    Article  CAS  PubMed  Google Scholar 

  • Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V et al (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28:316–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia M, Land H (2007) Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nat Struct Mol Biol 14:215–223

    Article  CAS  PubMed  Google Scholar 

  • Yasuda R, Harvey CD, Zhong H, Sobczyk A, van Aelst L, Svoboda K (2006) Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci 9:283–291

    Article  CAS  PubMed  Google Scholar 

  • Yuan M-H, Zhou R-S, She B, Xu H-F, Wang J-Y, Wei L-X (2014) Expression and clinical significance of STIP1 in papillary thyroid carcinoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 35:2391–2395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from the South African Research Chairs Initiative of the Department of Science and Technology (DST) and the National Research Foundation of South Africa (NRF) (Grant No. 98566), the Cancer Association of South Africa (CANSA), Medical Research Council South Africa (MRC-SA) with funds from the National Treasury under its Economic Competitiveness and Support Package and Rhodes University. SAM was the recipient of a postgraduate bursary from the NRF and German Academic Exchange Service (DAAD). The views expressed are those of the authors and should not be attributed to the DST, NRF, CANSA, MRC-SA or Rhodes University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne L Edkins.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Supplementary Fig. 1

Confirmation of protein expression from plasmids. HeLa cells were transfected with pcDNA3-FLAG-p53 (a), pBABE-c-RAF 22 W (b), mEGFP-HRAS, mEGFP-HRAS G12 V, mEGFP-HRAS S17 N (c) or with water as a control. Whole cell lysates were produced 48 h after transfection and western blots were performed using 50 μg total protein with antibodies against FLAG, Raf1 and EGFP, respectively. (GIF 59 kb)

High resolution image (TIFF 580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattison, S.A., Blatch, G.L. & Edkins, A.L. HOP expression is regulated by p53 and RAS and characteristic of a cancer gene signature. Cell Stress and Chaperones 22, 213–223 (2017). https://doi.org/10.1007/s12192-016-0755-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0755-8

Keywords

Navigation