Skip to main content
Log in

Investigation of immunomodulatory and anti-inflammatory effects of eriodictyol through its cellular anti-oxidant activity

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses against infection or to ameliorate immune-based pathologies. To determine whether eriodictyol has immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we investigated the stimulatory effect of eriodictyol on spleen cells isolated from BALB/c mice. Eriodictyol significantly stimulated splenocyte proliferation. However, only B lymphocytes (not T lymphocytes) could be stimulated by eriodictyol in a dose-related manner. Studies assessing potential effect of eriodictyol on innate immunity reported that eriodictyol enhanced significantly the killing activity of natural killer (NK) cells, T lymphocytes, and macrophages. We also demonstrated that eriodictyol inhibited nitric oxide (NO) production and lysosomal enzyme activity in murine peritoneal macrophages cultured ex-vivo, suggesting a potential anti-inflammatory effect in situ. Eriodictyol revealed also a cellular anti-oxidant activity in splenocytes and macrophages. Furthermore, eriodictyol increased catalase activity in spleen cells. From this data, it can be concluded that eriodictyol exhibited an immunomodulatory effect that could be ascribed in part to a cytoprotective effect related to its anti-oxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Areias FM, Rego AC, Oliveira CR, Seabra RM (2001) Anti-oxidant effect of flavonoids after ascorbate/Fe2+-induced oxidative stress in cultured retinal cells. Biochem Pharmacol 62:111–118

    Article  CAS  PubMed  Google Scholar 

  • Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chayen J, Bitensky L, Butcher RG, Poulter LW, Ubhi GS (1970) Methods for direct measurement of anti-inflammatory action on human tissue maintained in vitro. Br J Dermatol 82:62–66

    Article  Google Scholar 

  • Cherng JM, Chiang W, Chiang LC (2007) Immunomodulatory activities of common vegetables and spices of Umbelliferae and related coumarins and flavonoids. Food Chem 106:944–950

    Article  Google Scholar 

  • Clavin M, Gorzalczany S, Macho A, Muñoz E, Ferraro G, Acevedo C, Martino V (2007) Anti-inflammatory activity of flavonoids from Eupatorium arnottianum. J Ethnopharmacol 112:585–589

    Article  CAS  PubMed  Google Scholar 

  • Comalada M, Ballester I, Bailón E et al (2006) Inhibition of pro-inflammatory markers in primary bone marrow derived marrow derived mouse macrophages by naturally-occurring flavonoids: analysis of the structure-activity relationship. Biochem Pharmacol 72:1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Delaporte RH, Sánchez GM, Cuellar AC, Giuliani A, Palazzo de Mello JC (2002) Anti-inflammatory activity and lipid peroxidation inhibition of iridoid lamiide isolated from Bouchea fluminensis (Vell.) Mold (Verbenaceae). J Ethnopharmacol 82:127–130

    Article  CAS  PubMed  Google Scholar 

  • Dumont S, Hartmann D, Poindron P, Oberling F, Faradji A, Bartholeyns J (1985) Control of antitumoral activity of human macrophages produced in large amounts in view of adoptive transfer. Eur J Cancer Clin On 24:1691

    Article  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Guo TL, Mccay JA, Zhang LX, Brown RD, You L, Karrow NA, Germolec DR, White KLJR (2001) Genistein modulates immune responses and increases host resistance to B16-F10 tumor in adult female B6C3F1 mice. J Nutr 131:3251–3258

    CAS  PubMed  Google Scholar 

  • Harizi H, Chaabane F, Ghedira K, Chekir-Ghedira L (2011) Inhibition of proinflammatory macrophage responses and lymphocyte proliferation in vitro by ethyl acetate leaf extract from Daphne gnidium. Cell Immunol 267:94–101

    Article  CAS  PubMed  Google Scholar 

  • Hodek P, Trefil P, Stiborova M (2002) Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact 139:1–21

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Chung CP, Kuo YH, Lin YL, Chiang W (2009) Identification of compounds in adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed hull extracts that inhibit lipopolysaccharide-induced inflammation in Raw 264.7 macrophages. J Agr Food Chem 57:10651–10657

    Article  CAS  Google Scholar 

  • Ismail N, Abdullah H, Seidel V, Rotondo D (2012) Human natural killer (NK) cell activation by luteolin from Brucea javanica leaves. J. Cancer Res. Exp. Oncol. ISSN: 2141–2243

  • Johnson J, Maher P, Hanneken A (2009) The flavonoid, eriodictyol, induces long term protection in ARPE-19 cells through its effects on Nrf2 activation and phase 2 gene expression. Invest Ophthalmol Vis Sci 50:2398–2406

    Article  PubMed  Google Scholar 

  • Kang KA, Lee KH, Chae S, Zhang R, Jung MS, Ham YM, Baik JS, Lee NH, Hyun JW (2006) Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J Cell Biochem 97:609–20

    Article  CAS  PubMed  Google Scholar 

  • Keller R, Kelst R, Wechsler A, Leist TP, Van Der Meide PH (1990) Mechanisms of macrophage-mediated tumor-cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer 46:682–686

    Article  CAS  PubMed  Google Scholar 

  • Kovacs EJ, Palmer JL, Fortin CF, Fülöp T Jr, Goldstein DR, Linton PJ (2009) Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol 30:319–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JK (2011) Anti-inflammatory Effects of Eriodictyol in Lipopolysaccharide stimulated raw 264.7 murine macrophages. Arch Pharm Res 34:671–679

    Article  CAS  PubMed  Google Scholar 

  • Lee SE, Yang H, Son GW, Park HR, Park CS, Jin YH, Park YS (2015) Eriodictyol Protects endothelial cells against oxidative stress-induced cell death through modulating ERK/Nrf2/ARE-dependent heme oxygenase-1 expression. Int J Mol Sci 16:14526–14539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CZ, Jin HH, Sun HX, Zhang ZZ, Zheng JX, Li SH, Han SH (2016) Eriodictyol attenuates cisplatin-induced kidney injury by inhibiting oxidative stress and inflammation. Eur J Pharmacol 772:124–30

    Article  CAS  PubMed  Google Scholar 

  • Lindqvist C, Bobrowska-Hägerstrand M, Mrówczyńska L, Engblom C, Hägerstrand H (2014) Potentiation of natural killer cell activity with myricetin. Anticancer Res 34:3975–9

    CAS  PubMed  Google Scholar 

  • Ljunggren HG, Karre K (1990) In search of the “missing self”: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    Article  CAS  PubMed  Google Scholar 

  • Lu CC, Chen JK (2010) Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D-dependent pathways. J Cell Physiol 223:343–51

    CAS  PubMed  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  CAS  PubMed  Google Scholar 

  • Manosroi A, Saraphanchotiwitthaya A, Manosroi J (2005) In vitro immunomodulatory effect of Pouteria cambodiana (Pierre ex Dubard) Baehni extract. J Ethnopharmacol 101:90–94

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nworu CS, Temchura V, Okoye FB, Akah PA, Esimone CO, Uberla K (2010) Activation of murine lymphocytes and modulation of macrophage functions by fractions of Alchornea cordifolia (Euphorbiaceae) leaf extract. Immunopharmacol Immunotoxicol 32:28–36

    Article  CAS  PubMed  Google Scholar 

  • Orsolić N, Basić I (2005) Water-soluble derivative of propolis and its polyphenolic compounds enhance tumoricidal activity of macrophages. J Ethnopharmacol 102:37–35

    Article  PubMed  Google Scholar 

  • Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossato MF, Trevisan G, Walker CI, Klafke JZ, de Oliveira AP, Villarinho JG, Zanon RB, Royes LF, Athayde ML, Gomez MV, Ferreira J (2011) Eriodictyol: a flavonoid antagonist of the TRPV1 receptor with antioxidant activity. Biochem Pharmacol 81:544–551

    Article  CAS  PubMed  Google Scholar 

  • Russell SW, Doe WF, McIntosh AT (1977) Functional characterization of a stable nonlytic stage of macrophage activation in tumors. J Exp Med 146:1511

    Article  CAS  PubMed  Google Scholar 

  • Sarangi I, Ghosh D, Bhutia SK, Mallick SK, Maiti TK (2006) Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. Int Immunopharmacol 6:1287–1297

    Article  CAS  PubMed  Google Scholar 

  • Sharififar F, Pournourmohammadi SH, Arabnezhad M, Rastegarianzadeh R, Ranjbaran O, Pourhemati A (2009) Immunomodulatory activity of aqueous extract of Heracleum persicum Desf. Mice Iran J Pharm Res 8:287–292

    CAS  Google Scholar 

  • Whiteside TL, Herberman RB (1995) The role of natural killer cells in immune surveillance of cancer. Curr Opin Immunol 7:704–710

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55:8896–8907

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hung TM, Phuong PT, Ngoc TM, Min BS, Song KS, Seong YH, Bae K (2006) Anti-inflammatory activity of flavonoids from Populus davidiana. Arch Pharm Res 29:1102–8

    Article  CAS  PubMed  Google Scholar 

  • Zhu GF, Guo HJ, Huang Y, Wu CT, Zhang XF (2015) Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity. Exp Ther Med 10:2259–2266

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the “Ministère Tunisien de l’enseignement supérieur et de la recherché scientifique” for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Chekir-Ghedira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokdad-Bzeouich, I., Mustapha, N., Sassi, A. et al. Investigation of immunomodulatory and anti-inflammatory effects of eriodictyol through its cellular anti-oxidant activity. Cell Stress and Chaperones 21, 773–781 (2016). https://doi.org/10.1007/s12192-016-0702-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0702-8

Keywords

Navigation