Skip to main content
Log in

Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Cardiac mitochondrial dysfunction is considered to be the main manifestation in the pathology of ischemia reperfusion injury, and by restoring its functional activity, hydrogen sulfide (H2S), a novel endogenous gaseotransmitter renders cardioprotection. Given that interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria are the two main types in the heart, the present study investigates the specific H2S-mediated action on IFM and SSM during ischemic reperfusion in the Langendorff rat heart model. Rats were randomly divided into five groups, namely normal, ischemic control, reperfusion control (I/R), ischemic post-conditioning (POC), and H2S post-conditioning (POC_H2S). In reperfusion control, cardiac contractility decreased, and lactate dehydrogenase, creatine kinase, and infracted size increased compared to both normal and ischemic group. In hearts post-conditioned with H2S and the classical method improved cardiac mechanical function and decreased cardiac markers in the perfusate and infarct size significantly. Both POC and POC_H2S exerts its cardioprotective effect of preserving the IFM, as evident by significant improvement in electron transport chain enzyme activities and mitochondrial respiration. The in vitro action of H2S on IFM and SSM from normal and I/R rat heart supports H2S and mediates cardioprotection via IFM preservation. Our study indicates that IFM play an important role in POC_H2S mediated cardioprotection from reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrew JT, Lindsay SB, Stanley BD, Corinne Z, William LH, Paul SB (2006) Mitochondrial dysfunction in cardiac ischemia–reperfusion injury: ROS from complex I, without inhibition. Biochim Biophys Acta (BBA) - Mol Basis Dis 1762(2):223–231

    Article  Google Scholar 

  • Ang AD, Konigstorfer A, Giles GI, Bhatia M (2012) Measuring free tissue sulfide. Adv Biol Chem 2:360–365

    Article  CAS  Google Scholar 

  • Biase FH, Franco MM, Goulart LR, Antunes RC (2002) Protocol for extraction of genomic DNA from swine solid tissues. Genet Mol Biol 25(3):3313–3315

    Article  Google Scholar 

  • Carden DL, Granger DN (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190(3):255–266

    Article  CAS  PubMed  Google Scholar 

  • Chen YR, Chen CL, Pfeiffer DR, Zweier JL (2007) Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J Biol Chem 282:32640–32654

    Article  CAS  PubMed  Google Scholar 

  • Chen CL, Chen J, Rawale S, Varadharaj S, Kaumaya PP, Zweier JL, Chen YR (2008) Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium. J Biol Chem 283:27991–28003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevion M, Jiang Y, Har-El R, Berenshtein E, Uretzky G, Kitrossky N (1993) Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proc Natl Acad Sci U S A 90(3):1102–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek M, Knutelska J, Bednarski M, Nowinski L, Zygmunt M, Bilska-Wilkosz A, Iciek M, Otto M, Zytka I, Sapa J, Włodek L, Filipek B (2014) Alpha lipoic acid protects the heart against myocardial post ischemia–reperfusion arrhythmias via KATP channel activation in isolated rat hearts. Pharmacol Rep 66(3):499–504

    Article  CAS  PubMed  Google Scholar 

  • Emilie L, Sabria M, Mireille A, Catherine C, Francois B, Frederic B (2010) Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta (BBA) Bioenerg 1797(8):1500–1511

    Article  Google Scholar 

  • Frazier AE, Thorburn DR (2012) Biochemical analyses of the electron transport chain complexes by spectrophotometry Methods. Mol Biol 837:49–62

    CAS  Google Scholar 

  • Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313(2):362–368

    Article  CAS  PubMed  Google Scholar 

  • Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21(8):1699–1706

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Pang QF, Xu G, Wang L, Wang JK, Zeng YM (2008) Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur J Pharmacol 587(1-3):1–7

    Article  CAS  PubMed  Google Scholar 

  • John WE, John WC, Joanna M, Jeannette ED, David WK, Ling T, Xiangying J, Rosario S, Levente K, Csaba S, Hideo K, Chi-Wing C, David JL (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104(39):15560–15565

    Article  Google Scholar 

  • Jonathan PL, Chad KN, Hena A, Sana A, John WC (2014) Hydrogen sulfide provides cardioprotection against myocardial/ischemia reperfusion injury in the diabetic state through the activation of the RISK pathway. Med Gas Res 4:20

    Article  Google Scholar 

  • Katalin M, Ciro C, Katalin E, Andreas P, Szabo C (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27(2):601–611

    Article  Google Scholar 

  • Kurian GA, Sachu, Thomas V (2005) Effect of aqueous extract of Desmodium Gangeticum root in the severity of isoproterenol induced Myocardial infarcted rats. J Ethnapharmacol 97(3):457–461

    Article  Google Scholar 

  • Kurian GA, Berenshtein E, Saada A, Chevion M (2012a) Rat cardiac mitochondrial sub-population show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cell Physiol Biochem 30(1):83–94

    Article  CAS  PubMed  Google Scholar 

  • Kurian GA, Berenshtein E, Kakhlon O, Chevion M (2012b) Energy status determines the distinct biochemical and physiological behavior of interfibrillar and sub-sarcolemmal mitochondria. Biochem Biophys Res Commun 428(3):376–382

    Article  CAS  PubMed  Google Scholar 

  • Lacerda L, Somers S, Opie LH, Lecour S (2009) Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Hwang JH, Lee YS, Cho KS (1995) Purification and characterization of mouse liver rhodanese. J Biochem Mol Biol 28:170–176

    CAS  Google Scholar 

  • Lesnefsky EJ, Gudz T, Migita CT, Ikeda-Saito M, Hassan MO, Turkaly PJ, Hoppel CL (2001) Ischemic injury to mitochondrial electron transport in the aging heart: damage to the iron-sulfur protein subunit of electron transport complex III. Arch Biochem Biophys 385:117–128

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang Y, Wei C, Bai S, Zhao Y, Li H, Wu B, Wang R, Wu L, Xu C (2015) Mediation of exogenous hydrogen sulfide in recovery of ischemic post-conditioning-induced cardioprotection via down-regulating oxidative stress and up-regulating PI3K/Akt/GSK-3β pathway in isolated aging rat hearts. Cell Biosci 5:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY, Ji Y (2012) Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz J Med Biol Res 45(10):898–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mailloux RJ, Jin X, Willmore WG (2014) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2:123–139

    Article  CAS  PubMed  Google Scholar 

  • Maria-Giulia P, Pasquale P, Claudia P (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 3(6):186–200

    Article  Google Scholar 

  • Martens ME, Chang CH, Lee CP (1986) Reye’s syndrome: mitochondrial swelling and Ca2+ release induced by Reye’s plasma, allantoin, and salicylate. Arch Biochem Biophys 244:773–786

    Article  CAS  PubMed  Google Scholar 

  • Mensah K, Mocanu MM, Yellon DM (2005) Failure to protect the myocardium against ischemia/reperfusion injury after chronic atorvastatin treatment is recaptured by acute atorvastatin treatment: a potential role for phosphatase and tensin homolog deleted on chromosome ten. J Am Coll Cardiol 45(8):1287–1291

    Article  CAS  PubMed  Google Scholar 

  • Michel O, Gary FB, Fabio DL, Peter F, David GD, Derek JH, Gerd H, Jakob VJ, Derek MY, Rainer S (2010) Postconditioning and protection from reperfusion injury: where do we stand? Cardiovasc Res 87(3):406–423

    Article  Google Scholar 

  • Ming F, Weihua Z, Lingyun W, Guangdong Y, Hongzhu L, Rui W (2012) Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci U S A 109(8):2943–2948

    Article  Google Scholar 

  • Modis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, Mark RH, Peter R, Frederic B, Csaba S (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 171(8):2123–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252(23):8731–8739

    CAS  PubMed  Google Scholar 

  • Pan TT, Neo KL, Hu LF, Yong QC, Bian JS (2008) H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am J Physiol Cell Physiol 294(1):C169–C177

    Article  CAS  PubMed  Google Scholar 

  • Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507

    Article  CAS  PubMed  Google Scholar 

  • Raymond WL, David WK, Jeannette ED (1996) Sulfide-stimulation of oxygen consumption rate and cytochrome reduction in gills of the estuarine mussel Geukensia demissa. Bid Bull 191:421–430

    Article  Google Scholar 

  • Scaduto RC, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien PP, Pieniazek NJ (1973) Use of the L-serine sulfhydrylase assay for the estimation of cystathionine beta-synthase. Anal Biochem 54:294–299

    Article  CAS  PubMed  Google Scholar 

  • Szabo C, Ransy C, Modis K, Andriamihaja M, Murghes B, Coletta C, Olah G, Yanagi K, Bouillaud F (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol 171(8):2099–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatjana MH (2011) Modulation of sulfide oxidation and toxicity in rat mitochondria by dehydroascorbic acid. Biochim Biophys Acta (BBA) Bioenerg 1807(9):1206–1213

    Article  Google Scholar 

  • Yeong-Renn C, Jay L (2014) Zweier2 cardiac mitochondria and ROS generation. Circ Res 114(3):524–537

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino A. Kurian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, S.A., Ravindran, S. & Kurian, G.A. Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury. Cell Stress and Chaperones 21, 571–582 (2016). https://doi.org/10.1007/s12192-016-0682-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0682-8

Keywords

Navigation