Skip to main content
Log in

Leishmania donovani P23 protects parasites against HSP90 inhibitor-mediated growth arrest

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

In Leishmania donovani, the HSP90 chaperone complex plays an essential role in the control of the parasite’s life cycle, general viability and infectivity. Several of the associated co-chaperones were also shown to be essential for viability and/or infectivity to mammalian cells. Here, we identify and describe the co-chaperone P23 and distinguish its function from that of the structurally related small heat shock protein HSP23. P23 is expressed constitutively and associates itself with members of the HSP90 complex, i.e. HSP90 and Sti1. Viable P23 gene replacement mutants could be raised and confirmed as null mutants without deleterious effects on viability under a variety of physiological growth conditions. The null mutant also displays near-wild-type infectivity, arguing against a decisive role played by P23 in laboratory settings. However, the P23 null mutant displays a marked hypersensitivity against HSP90 inhibitors geldanamycin and radicicol. P23 also appears to affect the radicicol resistance of a HSP90 Leu33-Ile mutant described previously. Therefore, the annotation of L. donovani P23 as HSP90-interacting co-chaperone is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7, e35671. doi:10.1371/journal.pone.0035671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Batista LF, Segatto M, Guedes CE, Sousa RS, Rodrigues CA, Brazuna JC, Silva JS, Santos SO, Larangeira D, Macedo AM et al (2012) An assessment of the genetic diversity of Leishmania infantum isolates from infected dogs in Brazil. AmJTrop Med Hyg 86:799–806. doi:10.4269/ajtmh.2012.11-0300

    Article  Google Scholar 

  • Batista FA, Almeida GS, Seraphim TV, Silva KP, Murta SM, Barbosa LR, Borges JC (2015) Identification of two p23 co-chaperone isoforms in Leishmania braziliensis exhibiting similar structures and Hsp90 interaction properties despite divergent stabilities. FEBS J 282:388–406. doi:10.1111/febs.13141

    Article  CAS  PubMed  Google Scholar 

  • Bohen SP (1998) Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins. Mol Cell Biol 18:3330–3339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bose S, Weikl T, Bugl H, Buchner J (1996) Chaperone function of Hsp90-associated proteins. Science 274:1715–1717

    Article  CAS  PubMed  Google Scholar 

  • Brandau S, Dresel A, Clos J (1995) High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania. Biochem J 310:225–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchner J (1999) Hsp90 & Co.—a holding for folding. Trends Biochem Sci 24:136–141

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451. doi:10.1016/j.cell.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  • Choudhury K, Zander D, Kube M, Reinhardt R, Clos J (2008) Identification of a Leishmania infantum gene mediating resistance to miltefosine and SbIII. Int J Parasitol 38:1411–1423

    Article  CAS  PubMed  Google Scholar 

  • Chua CS, Low H, Goo KS, Sim TS (2010) Characterization of Plasmodium falciparum co-chaperone p23: its intrinsic chaperone activity and interaction with Hsp90. Cell Mol Life Sci 67:1675–1686. doi:10.1007/s00018-010-0275-0

    Article  CAS  PubMed  Google Scholar 

  • Clos J, Brandau S (1994) pJC20 and pJC40—two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli. Prot Expression Purif 5:133–137

    Article  CAS  Google Scholar 

  • Clos J, Hombach A (2015) Heat shock proteins of Leishmania: chaperones in the driver’s seat. Caister Academic Press17-36

  • Echeverria PC, Figueras MJ, Vogler M, Kriehuber T, de Miguel N, Deng B, Dalmasso MC, Matthews DE, Matrajt M, Haslbeck M et al (2010) The Hsp90 co-chaperone p23 of Toxoplasma gondii: Identification, functional analysis and dynamic interactome determination. Mol Biochem Parasitol 172:129–140. doi:10.1016/j.molbiopara.2010.04.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Echtenkamp FJ, Zelin E, Oxelmark E, Woo JI, Andrews BJ, Garabedian M, Freeman BC (2011) Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Mol Cell 43:229–241. doi:10.1016/j.molcel.2011.05.029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Y, Fliss AE, Rao J, Caplan AJ (1998) SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol Cell Biol 18:3727–3734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282. doi:10.1146/annurev.physiol.61.1.243

    Article  CAS  PubMed  Google Scholar 

  • Felts SJ, Toft DO (2003) p23, a simple protein with complex activities. Cell Stress Chaperones 8:108–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forafonov F, Toogun OA, Grad I, Suslova E, Freeman BC, Picard D (2008) p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol Cell Biol 28:3446–3456. doi:10.1128/MCB.02246-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freeman BC, Toft DO, Morimoto RI (1996) Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science 274:1718–1720

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ranea JA, Mirey G, Camonis J, Valencia A (2002) p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 529:162–167

    Article  CAS  PubMed  Google Scholar 

  • Grenert JP, Sullivan WP, Fadden P, Haystead TAJ, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E et al (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850

    Article  CAS  PubMed  Google Scholar 

  • Grenert JP, Johnson BD, Toft DO (1999) The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J Biol Chem 274:17525–17533

    Article  CAS  PubMed  Google Scholar 

  • Hombach A, Ommen G, Chrobak M, Clos J (2013) The Hsp90-Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages. Cell Microbiol 15:585–600. doi:10.1111/cmi.12057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hombach A, Ommen G, MacDonald A, Clos J (2014) A small heat shock protein is essential for thermotolerance and intracellular survival of Leishmania donovani. J Cell Sci. doi:10.1242/jcs.157297

    PubMed Central  PubMed  Google Scholar 

  • Hübel A, Brandau S, Dresel A, Clos J (1995) A member of the ClpB family of stress proteins is expressed during heat shock in Leishmania spp. Mol Biochem Parasitol 70:107–118

    Article  PubMed  Google Scholar 

  • Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta 1823:607–613. doi:10.1016/j.bbamcr.2011.09.020

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14:83–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapler GM, Coburn CM, Beverley SM (1990) Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol Cell Biol 10:1084–1094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krobitsch S, Clos J (2000) Cross-species homologous recombination in Leishmania donovani reveals the sites of integration. Mol Biochem Parasitol 107:123–128

    Article  CAS  PubMed  Google Scholar 

  • Krobitsch S, Brandau S, Hoyer C, Schmetz C, Hübel A, Clos J (1998) Leishmania donovani heat shock protein 100: characterization and function in amastigote stage differentiation. J Biol Chem 273:6488–6494

    Article  CAS  PubMed  Google Scholar 

  • Laban A, Wirth DF (1989) Transfection of Leishmania enriettii and expression of chloramphenicol acetyltransferase gene. Proc Natl Acad Sci U S A 86:9119–9123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D et al (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J: Off Publ Fed Am Soc Exp Biol 25:515–525. doi:10.1096/fj.10-157529

    Article  CAS  Google Scholar 

  • Lambertz U, Silverman JM, Nandan D, McMaster WR, Clos J, Foster LJ, Reiner NE (2012) Secreted virulence factors and immune evasion in visceral leishmaniasis. J Leukoc Biol 91:887–899. doi:10.1189/jlb.0611326

    Article  CAS  PubMed  Google Scholar 

  • Leprohon P, Legare D, Raymond F, Madore E, Hardiman G, Corbeil J, Ouellette M (2009) Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res 37:1387–1399. doi:10.1093/nar/gkn1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635. doi:10.1016/j.bbamcr.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60

    Article  Google Scholar 

  • Martinez-Yamout MA, Venkitakrishnan RP, Preece NE, Kroon G, Wright PE, Dyson HJ (2006) Localization of sites of interaction between p23 and Hsp90 in solution. J Biol Chem 281:14457–14464. doi:10.1074/jbc.M601759200

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP, Bukau B (1999) Molecular chaperones: the busy life of Hsp90. Curr Biol 9:R322–325

    Article  CAS  PubMed  Google Scholar 

  • Morales MA, Watanabe R, Dacher M, Chafey P, Osorio y Fortea J, Scott DA, Beverley SM, Ommen G, Clos J, Hem S et al (2010) Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci U S A 107:8381–8386. doi:10.1073/pnas.0914768107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C (1990) The stress response, function of the proteins, and perspectives. In: Morimoto RI, Tissières A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, Plainview, pp 1–36

    Chapter  Google Scholar 

  • Nathan DF, Lindquist S (1995) Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol 15:3917–3925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ommen G, Clos J (2009) Heat shock proteins in protozoan parasites—Leishmania spp. In: Calderwood S, Santoro G, Pockley G (eds) Prokaryotic and eukaryotic heat shock proteins in infectious disease. Springer, Berlin, pp 135–151

    Chapter  Google Scholar 

  • Ommen G, Lorenz S, Clos J (2009) One-step generation of double-allele gene replacement mutants in Leishmania donovani. Int J Parasitol 39:541–546

    Article  CAS  PubMed  Google Scholar 

  • Ommen G, Chrobak M, Clos J (2010) The co-chaperone SGT of Leishmania donovani is essential for the parasite's viability. Cell Stress Chaperones 39:541–546. doi:10.1007/s12192-009-0160-7

    Google Scholar 

  • Panaretou B, Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Embo J 17:4829–4836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci: CMLS 59:1640–1648

    Article  CAS  PubMed  Google Scholar 

  • Polson A, von Wechmar B, van Regenmortel MHV (1980) Immunol Commun 9:475–493

    CAS  PubMed  Google Scholar 

  • Polson A, Coetzer T, Kruger J, von Maltzahn E, van der Merwe KJ (1985) Improvements in the isolation of IgY from the yolks of eggs laid by immunized hens. Immunol Investig 14:323–327

    Article  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med(Maywood NJ) 228:111–133

    CAS  Google Scholar 

  • Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  CAS  PubMed  Google Scholar 

  • Racoosin EL, Swanson JA (1989) Macrophage colony-stimulating factor (rM-CSF) stimulates pinocytosis in bone marrow-derived macrophages. J Exp Med 170:1635–1648

    Article  CAS  PubMed  Google Scholar 

  • Reiling L, Jacobs T, Kroemer M, Gaworski I, Graefe S, Clos J (2006) Spontaneous recovery of pathogenicity by Leishmania major hsp100-/- alters the immune response in mice. Infect Immun 74:6027–6036. doi:10.1128/IAI.00773-05

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richter K, Walter S, Buchner J (2004) The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J Mol Biol 342:1403–1413. doi:10.1016/j.jmb.2004.07.064

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2007) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J. doi:10.1096/fj.07-9254com

    PubMed  Google Scholar 

  • Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22:590–602. doi:10.1096/fj.07-9254com

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schlüter A, Wiesgigl M, Hoyer C, Fleischer S, Klaholz L, Schmetz C, Clos J (2000) Expression and subcellular localization of cpn60 protein family members in Leishmania donovani. Biochim Biophys Acta 1491:65–74

    Article  PubMed  Google Scholar 

  • Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3:100–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulte TW, Akinaga S, Murakata T, Agatsuma T, Sugimoto S, Nakano H, Lee YS, Simen BB, Argon Y, Felts S et al (1999) Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol Endocrinol 13:1435–1448

    Article  CAS  PubMed  Google Scholar 

  • Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly I, Lynn MA, McMaster WR, Foster LJ, Levings MK et al (2010) Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 185:5011–5022. doi:10.4049/jimmunol.1000541

    Article  CAS  PubMed  Google Scholar 

  • Smith DF, Whitesell L, Katsanis E (1998) Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol Rev 50:493–514

    CAS  PubMed  Google Scholar 

  • Spath GF, Lye LF, Segawa H, Turco SJ, Beverley SM (2004) Identification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies. Infect Immun 72:3622–3627

    Article  PubMed Central  PubMed  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001. doi:10.1016/j.cell.2012.06.047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ubeda JM, Legare D, Raymond F, Ouameur AA, Boisvert S, Rigault P, Corbeil J, Tremblay MJ, Olivier M, Papadopoulou B et al (2008) Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 9:R115. doi:10.1186/gb-2008-9-7-r115

    Article  PubMed Central  PubMed  Google Scholar 

  • Vonlaufen N, Kanzok SM, Wek RC, Sullivan WJ Jr (2008) Stress response pathways in protozoan parasites. Cell Microbiol 10:2387–2399. doi:10.1111/j.1462-5822.2008.01210.x

    Article  CAS  PubMed  Google Scholar 

  • Weaver AJ, Sullivan WP, Felts SJ, Owen BA, Toft DO (2000) Crystal structure and activity of human p23, a heat shock protein 90 co-chaperone. J Biol Chem 275:23045–23052. doi:10.1074/jbc.M003410200

    Article  CAS  PubMed  Google Scholar 

  • Wiesgigl M, Clos J (2001) Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol Biol Cell 12:3307–3316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiser MF (2003) A Plasmodium homologue of cochaperone p23 and its differential expression during the replicative cycle of the malaria parasite. Parasitol Res 90:166–170. doi:10.1007/s00436-003-0835-4

    Article  PubMed  Google Scholar 

  • Yau WL, Pescher P, MacDonald A, Hem S, Zander D, Retzlaff S, Blisnick T, Rotureau B, Rosenqvist H, Wiese M et al (2014) The Leishmania donovani chaperone cyclophilin 40 is essential for intracellular infection independent of its stage-specific phosphorylation status. Mol Microbiol 93:80–97. doi:10.1111/mmi.12639

    Article  CAS  PubMed  Google Scholar 

  • Zamora-Veyl FB, Kroemer M, Zander D, Clos J (2005) Stage-specific expression of the mitochondrial co-chaperonin of Leishmania donovani, CPN10. Kinetoplastid Biol Dis 4:3

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank technical Dorothea Zander and Nicole Rath for expert technical assistance and the members of the laboratory for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Clos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hombach, A., Ommen, G., Sattler, V. et al. Leishmania donovani P23 protects parasites against HSP90 inhibitor-mediated growth arrest. Cell Stress and Chaperones 20, 673–685 (2015). https://doi.org/10.1007/s12192-015-0595-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0595-y

Keywords

Navigation