Skip to main content
Log in

A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

To assess the consequences of inactivation of heat shock factor 1 (HSF1) during aging, we analyzed the effect of HSF1 K80Q, a mutant unable to bind DNA, and of dnHSF1, a mutant lacking the activation domain, on the transcriptome of cells 6 and 24 h after heat shock. The primary response to heat shock (6 h recovery), of which 30 % was HSF1-dependent, had decayed 24 h after heat shock in control cells but was extended in HSF1 K80Q and dnHSF1 cells. Comparison with literature data showed that even the HSF1 dependent primary stress response is largely cell specific. HSF1 K80Q, but not HSF1 siRNA-treated, cells showed a delayed stress response: an increase in transcript levels of HSF1 target genes 24 h after heat stress. Knockdown of NRF2, but not of ATF4, c-Fos or FosB, inhibited this delayed stress response. EEF1D_L siRNA inhibited both the delayed and the extended primary stress responses, but had off target effects. In control cells an antioxidant response (ARE binding, HMOX1 mRNA levels) was detected 6 h after heat shock; in HSF1 K80Q cells this response was delayed to 24 h and the ARE complex had a different mobility. Inactivation of HSF1 thus affects the timing and nature of the antioxidant response and NRF2 can activate at least some HSF1 target genes in the absence of HSF1 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

HSP:

Heat shock protein

HSF1:

Heat shock factor 1

HSE:

Heat shock element

MEF:

Mouse embryonic fibroblast

NRF2:

Nuclear factor (erythroid-derived 2)-related factor 2

ARE:

Antioxidant response element

ATF:

Activating transcription factor

KEAP1:

Kelch-like ECH associated protein 1

References

  • Almeida DV, Nornberg BF, Geracitano LA, Barros DM, Monserrat JM, Marins LF (2010) Induction of phase II enzymes and hsp70 genes by copper sulfate through the electrophile-responsive element (EpRE): insights obtained from a transgenic zebrafish model carrying an orthologous EpRE sequence of mammalian origin. Fish Physiol Biochem 36(3):347–353

    Article  PubMed  CAS  Google Scholar 

  • Ambra R, Mocchegiani E, Giacconi R, Canali R, Rinna A, Malavolta M, Virgili F (2004) Characterization of the hsp70 response in lymphoblasts from aged and centenarian subjects and differential effects of in vitro zinc supplementation. Exp Gerontol 39(10):1475–1484

    Article  PubMed  CAS  Google Scholar 

  • Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    Article  PubMed  CAS  Google Scholar 

  • Bailey CK, Andriola IF, Kampinga HH, Merry DE (2002) Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 11(5):515–523

    Article  PubMed  CAS  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919

    Article  PubMed  CAS  Google Scholar 

  • Broadley SA, Hartl FU (2009) The role of molecular chaperones in human misfolding diseases. FEBS Lett 583(16):2647–2653

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging—a mini-review. Gerontology 55(5):550–558

    Article  PubMed  CAS  Google Scholar 

  • Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24(19):8477–8486

    Article  PubMed  CAS  Google Scholar 

  • Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130(6):1005–1018

    Article  PubMed  CAS  Google Scholar 

  • Denissov S, van Driel M, Voit R, Hekkelman M, Hulsen T, Hernandez N, Grummt I, Wehrens R, Stunnenberg H (2007) Identification of novel functional TBP-binding sites and general factor repertoires. EMBO J 26(4):944–954

    Article  PubMed  CAS  Google Scholar 

  • Eychene A, Rocques N, Pouponnot C (2008) A new MAFia in cancer. Nat Rev Cancer 8(9):683–693

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277(20):4112–4125

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto M, Takaki E, Hayashi T, Kitaura Y, Tanaka Y, Inouye S, Nakai A (2005) Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J Biol Chem 280(41):34908–34916

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Guettouche T, Fenna M, Boellmann F, Pratt WB, Toft DO, Smith DF, Voellmy R (2001) Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J Biol Chem 276(49):45791–45799

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    Article  PubMed  CAS  Google Scholar 

  • Hayashida N, Fujimoto M, Tan K, Prakasam R, Shinkawa T, Li L, Ichikawa H, Takii R, Nakai A (2010) Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J 29(20):3459–3469

    Article  PubMed  CAS  Google Scholar 

  • Heldens L, Dirks RP, Hensen SM, Onnekink C, van Genesen ST, Rustenburg F, Lubsen NH (2010) Co-chaperones are limiting in a depleted chaperone network. Cell Mol Life Sci 67(23):4035–4048

    Article  PubMed  CAS  Google Scholar 

  • Heldens L, van Genesen ST, Hanssen LL, Hageman J, Kampinga HH, Lubsen NH (2012) Protein refolding in peroxisomes is dependent upon an HSF1-regulated function. Cell Stress Chaperones 17(5):603–613

    Article  PubMed  CAS  Google Scholar 

  • Hensen SM, Heldens L, van Enckevort CM, van Genesen ST, Pruijn GJ, Lubsen NH (2012) Heat shock factor 1 is inactivated by amino acid deprivation. Cell Stress Chaperones 17(6):743–755

    Article  PubMed  CAS  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300(5622):1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Hu R, Xu C, Shen G, Jain MR, Khor TO, Gopalkrishnan A, Lin W, Reddy B, Chan JY, Kong AN (2006a) Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Cancer Lett 243(2):170–192

    Article  PubMed  CAS  Google Scholar 

  • Hu R, Xu C, Shen G, Jain MR, Khor TO, Gopalkrishnan A, Lin W, Reddy B, Chan JY, Kong AN (2006b) Identification of Nrf2-regulated genes induced by chemopreventive isothiocyanate PEITC by oligonucleotide microarray. Life Sci 79(20):1944–1955

    Article  PubMed  CAS  Google Scholar 

  • Inouye S, Izu H, Takaki E, Suzuki H, Shirai M, Yokota Y, Ichikawa H, Fujimoto M, Nakai A (2004) Impaired IgG production in mice deficient for heat shock transcription factor 1. J Biol Chem 279(37):38701–38709

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, O'Connor T, Yamamoto M (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8(4):379–391

    Article  PubMed  CAS  Google Scholar 

  • Jurivich DA, Choo M, Welk J, Qiu L, Han K, Zhou X (2005) Human aging alters the first phase of the molecular response to stress in T-cells. Exp Gerontol 40(12):948–958

    Article  PubMed  CAS  Google Scholar 

  • Kaitsuka T, Tomizawa K, Matsushita M (2011) Transformation of eEF1Bdelta into heat-shock response transcription factor by alternative splicing. EMBO Rep 12(7):673–681

    Article  PubMed  CAS  Google Scholar 

  • Kannan MB, Solovieva V, Blank V (2012) The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives. Biochim Biophys Acta 1823(10):1841–1846

    Article  PubMed  CAS  Google Scholar 

  • Kim G, Meriin AB, Gabai VL, Christians E, Benjamin I, Wilson A, Wolozin B, Sherman MY (2012) The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell 11(4):617–627

    Article  PubMed  CAS  Google Scholar 

  • Klok EJ, van Genesen ST, Civil A, Schoenmakers JG, Lubsen NH (1998) Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters. J Biol Chem 273(27):17206–17215

    Article  PubMed  CAS  Google Scholar 

  • Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5(2):e34

    Article  PubMed  Google Scholar 

  • Lee YK, Liu DJ, Lu J, Chen KY, Liu AY (2009) Aberrant regulation and modification of heat shock factor 1 in senescent human diploid fibroblasts. J Cell Biochem 106(2):267–278

    Article  PubMed  CAS  Google Scholar 

  • McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278(24):21592–21600

    Article  PubMed  CAS  Google Scholar 

  • Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150(3):549–562

    Article  PubMed  CAS  Google Scholar 

  • Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41(16):2449–2461

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22(11):1427–1438

    Article  PubMed  CAS  Google Scholar 

  • Namba T, Homan T, Nishimura T, Mima S, Hoshino T, Mizushima T (2009) Up-regulation of S100P expression by non-steroidal anti-inflammatory drugs and its role in anti-tumorigenic effects. J Biol Chem 284(7):4158–4167

    Article  PubMed  CAS  Google Scholar 

  • Page TJ, Sikder D, Yang L, Pluta L, Wolfinger RD, Kodadek T, Thomas RS (2006) Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol Biosyst 2(12):627–639

    Article  PubMed  CAS  Google Scholar 

  • Pan YX, Chen H, Thiaville MM, Kilberg MS (2007) Activation of the ATF3 gene through a co-ordinated amino acid-sensing response programme that controls transcriptional regulation of responsive genes following amino acid limitation. Biochem J 401(1):299–307

    Article  PubMed  CAS  Google Scholar 

  • Piechaczyk M, Blanchard JM (1994) c-fos proto-oncogene regulation and function. Crit Rev Oncol Hematol 17(2):93–131

    Article  PubMed  CAS  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  PubMed  CAS  Google Scholar 

  • Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97(11):5750–5755

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12(5):654–666

    Article  PubMed  CAS  Google Scholar 

  • Slavotinek A, Biesecker LG (2003) Genetic modifiers in human development and malformation syndromes, including chaperone proteins. Hum Mol Genet 12(Spec No 1):R45–R50

    Article  PubMed  CAS  Google Scholar 

  • Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, Kennedy BK, Kaeberlein M (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7(3):394–404

    Article  PubMed  CAS  Google Scholar 

  • Sykiotis GP, Bohmann D (2010) Stress-activated cap'n'collar transcription factors in aging and human disease. Sci Signal 3(112):re3

    Article  PubMed  Google Scholar 

  • Tamaru T, Hattori M, Honda K, Benjamin I, Ozawa T, Takamatsu K (2011) Synchronization of circadian Per2 rhythms and HSF1-BMAL1:CLOCK interaction in mouse fibroblasts after short-term heat shock pulse. PLoS One 6(9):e24521

    Article  PubMed  CAS  Google Scholar 

  • Thiaville MM, Dudenhausen EE, Zhong C, Pan YX, Kilberg MS (2008) Deprivation of protein or amino acid induces C/EBPbeta synthesis and binding to amino acid response elements, but its action is not an absolute requirement for enhanced transcription. Biochem J 410(3):473–484

    Article  PubMed  CAS  Google Scholar 

  • Voellmy R, Boellmann F (2007) Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594:89–99

    Article  PubMed  Google Scholar 

  • Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323(5917):1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ, Kingston RE, Morimoto RI (1986) Human HSP70 promoter contains at least two distinct regulatory domains. Proc Natl Acad Sci U S A 83(3):629–633

    Article  PubMed  CAS  Google Scholar 

  • Yin C, Xi L, Wang X, Eapen M, Kukreja RC (2005) Silencing heat shock factor 1 by small interfering RNA abrogates heat shock-induced cardioprotection against ischemia-reperfusion injury in mice. J Mol Cell Cardiol 39(4):681–689

    Article  PubMed  CAS  Google Scholar 

  • Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23(22):8137–8151

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi NF (2002) Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 86(2):376–393

    Article  PubMed  CAS  Google Scholar 

  • Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480

    Article  PubMed  CAS  Google Scholar 

  • Zumbrun SD, Hoffman B, Liebermann DA (2009) Distinct mechanisms are utilized to induce stress sensor gadd45b by different stress stimuli. J Cell Biochem 108(5):1220–1231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Zantema for the HSPB1 antibody. We thank the microarray facility at the VU UMC (Amsterdam, The Netherlands) for performing the microarray experiments. This work was financially supported by AgentschapNL (project numbers IGE03018 and IGE07004, www.agentschapnl.nl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolette H. Lubsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 853 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hensen, S.M.M., Heldens, L., van Genesen, S.T. et al. A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant. Cell Stress and Chaperones 18, 455–473 (2013). https://doi.org/10.1007/s12192-012-0400-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-012-0400-0

Keywords

Navigation