Skip to main content
Log in

Molecular and functional characterization of the only known hemiascomycete ortholog of the carboxyl terminus of Hsc70-interacting protein CHIP in the yeast Yarrowia lipolytica

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The carboxyl terminus of Hsc70-interacting protein (CHIP) is an Hsp70 co-chaperone and a U-box ubiquitin ligase that plays a crucial role in protein quality control in higher eukaryotes. The yeast Yarrowia lipolytica is the only known hemiascomycete where a CHIP ortholog is found. Here, we characterize Y. lipolyticas CHIP ortholog (Yl.Chn1p) and document its interactions with components of the protein quality control machinery. We show that Yl.Chn1p is non-essential unless Y. lipolytica is severely stressed. We sought for genetic interactions among key components of the Y. lipolytica protein quality control arsenal, including members of the Ssa-family of Hsp70 molecular chaperones, the Yl.Bag1p Hsp70 nucleotide exchange factor, the Yl.Chn1p and Yl.Ufd2p U-box ubiquitin ligases, the Yl.Doa10p and Yl.Hrd1p RING-finger ubiquitin ligases, and the Yl.Hsp104p disaggregating molecular chaperone. Remarkably, no synthetic phenotypes were observed among null alleles of the corresponding genes in most cases, suggesting that overlapping pathways efficiently act to enable Y. lipolytica cells to survive under harsh conditions. Yl.Chn1p interacts with mammalian and Saccharomyces cerevisiae members of the Hsp70 family in vitro, and these interactions are differently regulated by Hsp70 co-chaperones. We demonstrate notably that Yl.Chn1p/Ssa1p interaction is Fes1p-dependent and the formation of an Yl.Chn1p/Ssa1p/Sse1p ternary complex. Finally, we show that, similar to Sse1p, Yl.Chn1p can act as a “holdase” to prevent the aggregation of a heat-denatured protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alberti S, Bohse K, Arndt V, Schmitz A, Hohfeld J (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15(9):4003–4010. doi:10.1091/mbc.E04-04-0293

    Article  PubMed  CAS  Google Scholar 

  • Al-Ramahi I, Lam YC, Chen HK, de Gouyon B, Zhang M, Perez AM, Branco J, de Haro M, Patterson C, Zoghbi HY, Botas J (2006) CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem 281(36):26714–26724

    Article  PubMed  CAS  Google Scholar 

  • Babour A, Kabani M, Boisrame A, Beckerich JM (2008) Characterization of Ire1 in the yeast Yarrowia lipolytica reveals an important role for the Sls1 nucleotide exchange factor in unfolded protein response regulation. Curr Genet 53(6):337–346. doi:10.1007/s00294-008-0190-1

    Article  PubMed  CAS  Google Scholar 

  • Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19(6):4535–4545

    PubMed  CAS  Google Scholar 

  • Boisrame A, Beckerich JM, Gaillardin C (1996) Sls1p, an endoplasmic reticulum component, is involved in the protein translocation process in the yeast Yarrowia lipolytica. J Biol Chem 271(20):11668–11675

    Article  PubMed  CAS  Google Scholar 

  • Boisrame A, Chasles M, Babour A, Beckerich JM (2006) Two Hrd1p homologues in the yeast Yarrowia lipolytica which act in different pathways. Mol Genet Genomics 275(3):242–250. doi:10.1007/s00438-005-0084-6

    Article  PubMed  CAS  Google Scholar 

  • Boorstein WR, Craig EA (1990a) Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae. J Biol Chem 265(31):18912–18921

    PubMed  CAS  Google Scholar 

  • Boorstein WR, Craig EA (1990b) Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol 10(6):3262–3267

    PubMed  CAS  Google Scholar 

  • Bordallo J, Plemper RK, Finger A, Wolf DH (1998) Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell 9(1):209–222

    PubMed  CAS  Google Scholar 

  • Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40(2):238–252. doi:10.1016/j.molcel.2010.10.001

    Article  PubMed  CAS  Google Scholar 

  • Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350(9071):134–138. doi:10.1016/S0140-6736(97)02073-4

    Article  PubMed  CAS  Google Scholar 

  • Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3(1):93–96. doi:10.1038/35050618

    Article  PubMed  CAS  Google Scholar 

  • Cyr DM, Hohfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27(7):368–375

    Article  PubMed  CAS  Google Scholar 

  • Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D, Patterson C (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22(20):5446–5458. doi:10.1093/emboj/cdg529

    Article  PubMed  CAS  Google Scholar 

  • Demand J, Alberti S, Patterson C, Hohfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11(20):1569–1577

    Article  PubMed  CAS  Google Scholar 

  • Dikshit P, Jana NR (2007) The co-chaperone CHIP is induced in various stresses and confers protection to cells. Biochem Biophys Res Commun 357(3):761–765

    Article  PubMed  CAS  Google Scholar 

  • Doyle SM, Wickner S (2009) Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 34(1):40–48. doi:10.1016/j.tibs.2008.09.010

    Article  PubMed  CAS  Google Scholar 

  • Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU (2006) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25(11):2519–2528. doi:10.1038/sj.emboj.7601138

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Alberti S, Hohfeld J (2004) Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim Biophys Acta 1695(1–3):171–188. doi:10.1016/j.bbamcr.2004.09.020

    Article  PubMed  CAS  Google Scholar 

  • Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55(3):727–737

    Article  PubMed  CAS  Google Scholar 

  • Gidalevitz T, Kikis EA, Morimoto RI (2010) A cellular perspective on conformational disease: the role of genetic background and proteostasis networks. Curr Opin Struct Biol 20(1):23–32. doi:10.1016/j.sbi.2009.11.001

    Article  PubMed  CAS  Google Scholar 

  • Gottwald E, Herschbach M, Lahni B, Miesfeld RL, Kunz S, Raynes DA, Guerriero V (2006) Expression of the cochaperone HspBP1 is not coordinately regulated with Hsp70 expression. Cell Biol Int 30(6):553–558. doi:10.1016/j.cellbi.2006.03.005

    Article  PubMed  CAS  Google Scholar 

  • Hageman J, van Waarde MA, Zylicz A, Walerych D, Kampinga HH (2011) The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem J 435(1):127–142. doi:10.1042/BJ20101247

    Article  PubMed  CAS  Google Scholar 

  • Hampton RY, Gardner RG, Rine J (1996) Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 7(12):2029–2044

    PubMed  CAS  Google Scholar 

  • Haslberger T, Bukau B, Mogk A (2010) Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem Cell Biol 88(1):63–75. doi:10.1139/o09-118

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama S, Nakayama KI (2003) U-box proteins as a new family of ubiquitin ligases. Biochem Biophys Res Commun 302(4):635–645

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin–protein ligases. J Biol Chem 276(35):33111–33120. doi:10.1074/jbc.M102755200

    Article  PubMed  CAS  Google Scholar 

  • He F, Beckerich JM, Ribes V, Tollervey D, Gaillardin CM (1989) Two genes encode 7SL RNAs in the yeast Yarrowia lipolytica. Curr Genet 16(5–6):347–350

    Article  PubMed  CAS  Google Scholar 

  • Hoppe T, Cassata G, Barral JM, Springer W, Hutagalung AH, Epstein HF, Baumeister R (2004) Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans. Cell 118(3):337–349

    Article  PubMed  CAS  Google Scholar 

  • Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280(12):11635–11640. doi:10.1074/jbc.M412042200

    Article  PubMed  CAS  Google Scholar 

  • Janiesch PC, Kim J, Mouysset J, Barikbin R, Lochmuller H, Cassata G, Krause S, Hoppe T (2007) The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat Cell Biol 9(4):379–390. doi:10.1038/ncb1554

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J, Patterson C (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276(46):42938–42944

    Article  PubMed  CAS  Google Scholar 

  • Kabani M (2009) Structural and functional diversity among eukaryotic Hsp70 nucleotide exchange factors. Protein Pept Lett 16(6):623–660

    Article  PubMed  CAS  Google Scholar 

  • Kabani M, Martineau CN (2008) Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr Genomics 9(5):338–248. doi:10.2174/138920208785133280

    Article  PubMed  CAS  Google Scholar 

  • Kabani M, Beckerich JM, Gaillardin C (2000) Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol Cell Biol 20(18):6923–6934

    Article  PubMed  CAS  Google Scholar 

  • Kabani M, Beckerich JM, Brodsky JL (2002a) Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol Cell Biol 22(13):4677–4689

    Article  PubMed  CAS  Google Scholar 

  • Kabani M, McLellan C, Raynes DA, Guerriero V, Brodsky JL (2002b) HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett 531(2):339–342

    Article  PubMed  CAS  Google Scholar 

  • Khan LA, Nukina N (2004) Molecular and functional analysis of Caenorhabditis elegans CHIP, a homologue of Mammalian CHIP. FEBS Lett 565(1–3):11–18

    Article  PubMed  CAS  Google Scholar 

  • Kostova Z, Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin–proteasome connection. EMBO J 22(10):2309–2317. doi:10.1093/emboj/cdg227

    Article  PubMed  CAS  Google Scholar 

  • Krzewska J, Melki R (2006) Molecular chaperones and the assembly of the prion Sup35p, an in vitro study. EMBO J 25(4):822–833. doi:10.1038/sj.emboj.7600985

    Article  PubMed  CAS  Google Scholar 

  • Kubota H (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem 146(5):609–616. doi:10.1093/jb/mvp139

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252(5010):1162–1164

    Article  CAS  Google Scholar 

  • Martineau CN, Beckerich JM, Kabani M (2007) Flo11p-independent control of “mat” formation by hsp70 molecular chaperones and nucleotide exchange factors in yeast. Genetics 177(3):1679–1689. doi:10.1534/genetics.107.081141

    Article  PubMed  CAS  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3(1):100–105. doi:10.1038/35050509

    Article  PubMed  CAS  Google Scholar 

  • Mekouar M, Blanc-Lenfle I, Ozanne C, Da Silva C, Cruaud C, Wincker P, Gaillardin C, Neuveglise C (2010) Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol 11(6):R65. doi:10.1186/gb-2010-11-6-r65

    Article  PubMed  Google Scholar 

  • Miller VM, Nelson RF, Gouvion CM, Williams A, Rodriguez-Lebron E, Harper SQ, Davidson BL, Rebagliati MR, Paulson HL (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 25(40):9152–9161. doi:10.1523/JNEUROSCI.3001-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Min JN, Whaley RA, Sharpless NE, Lockyer P, Portbury AL, Patterson C (2008) CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol Cell Biol 28(12):4018–4025. doi:10.1128/MCB.00296-08

    Article  PubMed  CAS  Google Scholar 

  • Minami Y, Hohfeld J, Ohtsuka K, Hartl FU (1996) Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J Biol Chem 271(32):19617–19624

    Article  PubMed  CAS  Google Scholar 

  • Mirault ME, Southgate R, Delwart E (1982) Regulation of heat-shock genes: a DNA sequence upstream of Drosophila hsp70 genes is essential for their induction in monkey cells. EMBO J 1(10):1279–1285

    PubMed  CAS  Google Scholar 

  • Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2(12):1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Nikolay R, Wiederkehr T, Rist W, Kramer G, Mayer MP, Bukau B (2004) Dimerization of the human E3 ligase CHIP via a coiled-coil domain is essential for its activity. J Biol Chem 279(4):2673–2678

    Article  PubMed  CAS  Google Scholar 

  • Oh HJ, Chen X, Subjeck JR (1997) Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J Biol Chem 272(50):31636–31640

    Article  PubMed  CAS  Google Scholar 

  • Oh HJ, Easton D, Murawski M, Kaneko Y, Subjeck JR (1999) The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. J Biol Chem 274(22):15712–15718

    Article  PubMed  CAS  Google Scholar 

  • Pemberton S, Madiona K, Pieri L, Kabani M, Bousset L, Melki R (2011) Hsc70 interaction with soluble and fibrillar {alpha}-Synuclein. J Biol Chem. doi:10.1074/jbc.M111.261321

  • Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440(7083):551–555. doi:10.1038/nature04600

    Article  PubMed  CAS  Google Scholar 

  • Romanova NV, Chernoff YO (2009) Hsp104 and prion propagation. Protein Pept Lett 16(6):598–605

    Article  PubMed  CAS  Google Scholar 

  • Rosser MF, Washburn E, Muchowski PJ, Patterson C, Cyr DM (2007) Chaperone functions of the E3 ubiquitin ligase CHIP. J Biol Chem 282(31):22267–22277. doi:10.1074/jbc.M700513200

    Article  PubMed  CAS  Google Scholar 

  • Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

    Article  PubMed  CAS  Google Scholar 

  • Sharma D, Martineau CN, Le Dall MT, Reidy M, Masison DC, Kabani M (2009) Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS One 4(8):e6644. doi:10.1371/journal.pone.0006644

    Article  PubMed  Google Scholar 

  • Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280(25):23727–23734. doi:10.1074/jbc.M503326200

    Article  PubMed  CAS  Google Scholar 

  • Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17(3):367–379. doi:10.1016/j.molcel.2004.12.023

    PubMed  CAS  Google Scholar 

  • Swanson R, Locher M, Hochstrasser M (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev 15(20):2660–2674. doi:10.1101/gad.933301

    Article  PubMed  CAS  Google Scholar 

  • Tetzlaff JE, Putcha P, Outeiro TF, Ivanov A, Berezovska O, Hyman BT, McLean PJ (2008) CHIP targets toxic alpha-Synuclein oligomers for degradation. J Biol Chem 283(26):17962–17968. doi:10.1074/jbc.M802283200

    Article  PubMed  CAS  Google Scholar 

  • Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11(11):777–788

    Article  PubMed  CAS  Google Scholar 

  • Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol Cell Biol 7(7):2568–2577

    PubMed  CAS  Google Scholar 

  • Williams AJ, Knutson TM, Colomer Gould VF, Paulson HL (2009) In vivo suppression of polyglutamine neurotoxicity by C-terminus of Hsp70-interacting protein (CHIP) supports an aggregation model of pathogenesis. Neurobiol Dis 33(3):342–353. doi:10.1016/j.nbd.2008.10.016

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H (2003) AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132(2):861–869

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, Prodromou C, Pearl LH (2005) Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell 20(4):525–538

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Andreas Bracher (Max Plank Institut für Biochemie, Martinsried, Germany) for providing Fes1p, Fes1-A79R/R195A, and Sse1p expression plasmids. We thank Kenza Lahkim-Bennani for her contribution at the initial stages of this work. This work was supported by the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Recherche Agronomique (INRA), AgroParisTech and by a research grant FC0518 from the French cystic fibrosis foundation Vaincre la Mucoviscidose (to MK). CNM was the beneficiary of a doctoral grant from the French Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Kabani.

Additional information

Céline N. Martineau and Marie-Thérèse Le Dall these authors contributed equally to this work.

Part of this work was carried out at the former Laboratoire de Microbiologie et Génétique Moléculaire, CNRS, AgroParisTech, INRA UMR2585, F-78850, Thiverval-Grignon, France.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 969 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martineau, C.N., Le Dall, MT., Melki, R. et al. Molecular and functional characterization of the only known hemiascomycete ortholog of the carboxyl terminus of Hsc70-interacting protein CHIP in the yeast Yarrowia lipolytica . Cell Stress and Chaperones 17, 229–241 (2012). https://doi.org/10.1007/s12192-011-0302-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0302-6

Keywords

Navigation