Skip to main content
Log in

Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Streptococcus intermedius is a facultatively anaerobic, opportunistic pathogen that causes purulent infections and abscess formation. The DnaK chaperone system has been characterized in several pathogenic bacteria and seems to have important functions in stress resistance and pathogenicity. However, the role of DnaK in S. intermedius remains unclear. Therefore, we constructed a dnaK knockout mutant that exhibited slow growth, thermosensitivity, accumulation of GroEL in the cell, and reduced cytotoxicity to HepG2 cells. The level of secretion of a major pathogenic factor, intermedilysin, was not affected by dnaK mutation. We further examined the function and property of the S. intermedius DnaK chaperone system by using Escherichia coli ΔdnaK and ΔrpoH mutant strains. S. intermedius DnaK could not complement the thermosensitivity of E. coli ΔdnaK mutant. However, the intact S. intermedius DnaK chaperone system could complement the thermosensitivity and acid sensitivity of E. coli ΔdnaK mutant. The S. intermedius DnaK chaperone system could regulate the activity and stability of the heat shock transcription factor σ32 in E. coli, although S. intermedius does not utilize σ32 for heat shock transcription. The S. intermedius DnaK chaperone system was also able to efficiently eliminate the aggregated proteins from ΔrpoH mutant cells. Overall, our data showed that the S. intermedius DnaK chaperone system has important functions in quality control of cellular proteins but has less participation in the modulation of expression of pathogenic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  • Abranches J, Nascimento MM, Zeng L, Browngardt CM, Wen ZT, Rivera MF, Burne RA (2008) CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans. J Bacteriol 190:2340–2349. doi:10.1128/JB.01237-07

    Article  PubMed  CAS  Google Scholar 

  • Arsène F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  PubMed  Google Scholar 

  • Ben-Zvi AP, Goloubinoff P (2001) Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol 135:84–93. doi:10.1006/jsbi.2001.4352

    Article  PubMed  CAS  Google Scholar 

  • Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Walker GC (1989a) Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J Bacteriol 171:2337–2346

    PubMed  CAS  Google Scholar 

  • Bukau B, Walker GC (1989b) ΔdnaK52 mutants of Escherichia coli have defects in chromosome segregation and plasmid maintenance at normal growth temperatures. J Bacteriol 171:6030–6038

    PubMed  CAS  Google Scholar 

  • Bukau B, Walker GC (1990) Mutations altering heat shock specific subunit of RNA polymerase suppress major cellular defects of E. coli mutants lacking the DnaK chaperone. EMBO J 9:4027–4036

    PubMed  CAS  Google Scholar 

  • Claridge JE, Attorri S, Musher DM, Hebert J, Dunbar S (2001) Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus ("Streptococcus milleri group") are of different clinical importance and are not equally associated with abscess. Clin Infect Dis 15:1511–1515. doi:10.1086/320163

    Article  Google Scholar 

  • Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59:1607–1616. doi:10.1007/PL00012487

    Article  PubMed  CAS  Google Scholar 

  • Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833–842. doi:10.1016/0092-8674(92)90294-M

    Article  PubMed  CAS  Google Scholar 

  • Genevaux P, Georgopoulos C, Kelley WL (2007) The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 66:840–857. doi:10.1111/j.1365-2958.2007.05961.x

    Article  PubMed  CAS  Google Scholar 

  • Hanawa T, Fukuda M, Kawakami H, Hirano H, Kamiya S, Yamamoto T (1999) The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones 4:118–128

    PubMed  CAS  Google Scholar 

  • Henderson B, Allan E, Coates AR (2006) Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 74:3693–3706. doi:10.1128/IAI.01882-05

    Article  PubMed  CAS  Google Scholar 

  • Jackson MW, Silva-Herzog E, Plano GV (2004) The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol 54:1364–1378. doi:10.1111/j.1365-2958.2004.04353.x

    Article  PubMed  CAS  Google Scholar 

  • Jacobs JA, Pietersen HG, Stobberingh EE, Soeters PB (1995) Streptococcus anginosus, Streptococcus constellatus and Streptococcus intermedius. Clinical relevance, hemolytic and serologic characteristics. Am J Clin Pathol 104:547–553

    PubMed  CAS  Google Scholar 

  • Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87

    PubMed  CAS  Google Scholar 

  • Jerng JS, Hsueh PR, Teng LJ, Lee LN, Yang PC, Luh KT (1997) Empyema thoracis and lung abscess caused by viridans streptococci. Am J Respir Crit Care Med 156:1508–1514

    PubMed  CAS  Google Scholar 

  • Kietzman CC, Caparon MG (2010) CcpA and LacD.1 affect temporal regulation of Streptococcus pyogenes virulence genes. Infect Immun 78:241–252. doi:10.1128/IAI.00746-09

    Article  PubMed  CAS  Google Scholar 

  • Kim SN, Bae YG, Rhee DK (2008) Dual regulation of dnaK and groE operons by HrcA and Ca++ in Streptococcus pneumoniae. Arch Pharm Res 31:462–467. doi:10.1007/s12272-001-1179-4

    Article  PubMed  CAS  Google Scholar 

  • Koch B, Kilstrup M, Vogensen FK, Hammer K (1998) Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. J Bacteriol 180:3873–3881

    PubMed  CAS  Google Scholar 

  • Köhler S, Ekaza E, Paquet JY, Walravens K, Teyssier J, Godfroid J, Liautard JP (2002) Induction of dnaK through its native heat shock promoter is necessary for intramacrophagic replication of Brucella suis. Infect Immun 70:1631–1634

    Article  PubMed  Google Scholar 

  • Kusukawa N, Yura T, Ueguchi C, Akiyama Y, Ito K (1989) Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J 8:3517–3521

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lanzer M, Bujard H (1988) Promoters determine largely the efficiency of repressor action. Proc Natl Acad Sci USA 85:6632–6636

    Article  Google Scholar 

  • Lemos JA, Chen YY, Burne RA (2001) Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J Bacteriol 183:6074–6084. doi:10.1128/JB.183.20.6074-6084.2001

    Article  PubMed  CAS  Google Scholar 

  • Lemos JA, Luzardo Y, Burne RA (2007) Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans. J Bacteriol 189:1582–1588. doi:10.1128/JB.01655-06

    Article  PubMed  CAS  Google Scholar 

  • Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Rüdiger S, Bukau B (2000) Molecular basis for interactions of the DnaK chaperone with substrates. Biol Chem 381:877–885

    Article  PubMed  CAS  Google Scholar 

  • Minder AC, Narberhaus F, Babst M, Hennecke H, Fischer HM (1997) The dnaKJ operon belonging to the σ32-dependent class of heat shock genes in Bradyrhizobium japonicum. Mol Gen Genet 254:195–206

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590. doi:10.1093/emboj/16.15.4579

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Bukau B, Lutz R, Schumann W (1999) Construction and analysis of hybrid Escherichia coliBacillus subtilis dnaK genes. J Bacteriol 181:1971–1974

    PubMed  CAS  Google Scholar 

  • Nagamune H, Ohnishi C, Katsuura A, Fushitani K, Whiley RA, Tsuji A, Matsuda Y (1996) Intermedilysin, a novel cytotoxin specific for human cells secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess. Infect Immun 64:3093–3100

    PubMed  CAS  Google Scholar 

  • Nagamune H, Whiley RA, Goto T, Inai Y, Maeda T, Hardie JM, Kourai H (2000) Distribution of the intermedilysin gene among the anginosus group streptococci and correlation between intermedilysin production and deep-seated infection with Streptococcus intermedius. J Clin Microbiol 38:220–226

    PubMed  CAS  Google Scholar 

  • Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B (2008) Molecular basis for regulation of the heat shock transcription factor σ32 by the DnaK and DnaJ chaperones. Mol Cell 32:347–358. doi:10.1016/j.molcel.2008.09.016

    Article  PubMed  CAS  Google Scholar 

  • Schulz A, Tzschaschel B, Schumann W (1995) Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol Microbiol 15:421–429

    Article  PubMed  CAS  Google Scholar 

  • Shelburne SA, Davenport MT, Keith DB, Musser JM (2008a) The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol 16:318–325. doi:10.1016/j.tim.2008.04.002

    Article  PubMed  CAS  Google Scholar 

  • Shelburne SA, Keith D, Horstmann N, Sumby P, Davenport MT, Graviss EA, Brennan RG, Musser JM (2008b) A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci USA 105:1698–1703. doi:10.1073/pnas.0711767105

    Article  PubMed  CAS  Google Scholar 

  • Singh VK, Utaida S, Jackson LS, Jayaswal RK, Wilkinson BJ, Chamberlain NR (2007) Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology 153:3162–3173. doi:10.1099/mic.0.2007/009506-0

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto S, Higashi C, Saruwatari K, Nakayama J, Sonomoto K (2007) A gram-negative characteristic segment in Escherichia coli DnaK is essential for the ATP-dependent cooperative function with the co-chaperones DnaJ and GrpE. FEBS Lett 581:2993–2999. doi:10.1016/j.febslet.2007.05.055

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto S, Saruwatari K, Higashi C, Tsuruno K, Matsumoto S, Nakayama J, Sonomoto K (2008) In vivo and in vitro complementation study comparing the function of DnaK chaperone systems from halophilic lactic acid bacterium Tetragenococcus halophilus and Escherichia coli. Biosci Biotechnol Biochem 72:811–822. doi:10.1271/bbb.70691

    Article  PubMed  CAS  Google Scholar 

  • Sukeno A, Nagamune H, Whiley RA, Jafar SI, Aduse-Opoku J, Ohkura K, Maeda T, Hirota K, Miyake Y, Kourai H (2005) Intermedilysin is essential for the invasion of hepatoma HepG2 cells by Streptococcus intermedius. Microbiol Immunol 49:681–694

    PubMed  CAS  Google Scholar 

  • Sussman MD, Setlow P (1987) Nucleotide sequence of Bacillus megaterium gene homologous to the dnaK gene of Escherichia coli. Nucleic Acids Res 15:3923

    Article  PubMed  CAS  Google Scholar 

  • Takaya A, Tomoyasu T, Tokumitsu A, Morioka M, Yamamoto T (2002) The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol 184:224–32. doi:10.1128/JB.184.1.224-232.2002

    Article  PubMed  CAS  Google Scholar 

  • Takaya A, Tomoyasu T, Matsui H, Yamamoto T (2004) The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection. Infect Immun 72:1364–73. doi:10.1128/IAI.72.3.1364-1373.2004

    Article  PubMed  CAS  Google Scholar 

  • Tilly K, Hauser R, Campbell J, Ostheimer GJ (1993) Isolation of dnaJ, dnaK, and grpE homologues from Borrelia burgdorferi and complementation of Escherichia coli mutants. Mol Microbiol 7:359–369

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B (2001) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40:397–413. doi:10.1046/j.1365-2958.2001.02383.x

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu T, Takaya A, Handa Y, Karata K, Yamamoto T (2005) ClpXP controls the expression of LEE genes in enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett 253:59–66. doi:10.1016/j.femsle.2005.09.020

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu T, Tabata A, Hiroshima R, Imaki H, Masuda S, Whiley RA, Aduse-Opoku J, Kikuchi K, Hiramatsu K, Nagamune H (2010a) Role of catabolite control protein A in the regulation of intermedilysin production by Streptococcus intermedius. Infect Immun 78:4012–4021. doi:10.1128/IAI.00113-10

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu T, Tabata A, Nagamune H (2010b) Investigation of the chaperone function of the small heat shock protein–AgsA. BMC Biochem 24:11–27. doi:10.1186/1471-2091-11-27

    Google Scholar 

  • Whiley RA, Fraser H, Hardie JM, Beighton D (1990) Phenotypic differentiation of Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus strains within the "Streptococcus milleri group". J Clin Microbiol 28:1497–1501

    PubMed  CAS  Google Scholar 

  • Whiley RA, Beighton D, Winstanley TG, Fraser HY, Hardie JM (1992) Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J Clin Microbiol 30:243–244

    PubMed  CAS  Google Scholar 

  • Woodbury R, Haldenwang WG (2003) HrcA is a negative regulator of the dnaK and groESL operons of Streptococcus pyogenes. Biochem Biophys Res Commun 302:722–727. doi:10.1016/S0006-291X(03)00254-7

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Sashinami H, Takaya A, Tomoyasu T, Matsui H, Kikuchi Y, Hanawa T, Kamiya S, Nakane A (2001) Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun 69:3164–3174. doi:10.1128/IAI.69.5.3164-3174.2001

    Article  PubMed  CAS  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158. doi:10.1016/S1369-5274(99)80027-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. S. Ishida, Mr. K. Nagato, and Ms. N. Yamamoto for technical assistance. This work was partially supported by KAKENHI (Grant-in-Aid for Scientific Research (C) 19590449, 23590510) from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Nagamune.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(PPT 2371 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomoyasu, T., Tabata, A., Imaki, H. et al. Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity. Cell Stress and Chaperones 17, 41–55 (2012). https://doi.org/10.1007/s12192-011-0284-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0284-4

Keywords

Navigation