Skip to main content
Log in

Cholesterol-derived bile acids enhance the chaperone activity of α-crystallins

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Human lens membranes contain the highest cholesterol concentration of any known biological membranes, but it significantly decreases with age. Oxygenation of cholesterol generates numerous forms of oxysterols (bile acids). We previously showed that two forms of the bile acid components—ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA)—suppressed lens epithelial cell death and alleviated cataract formation in galactosemic rat lenses. We investigated whether these compounds also suppress the thermal aggregation of human lens crystallins. Total water-soluble (WS) proteins were prepared from human lenses, and recombinant human crystallins (αA-, αB-, βB2-, and γC-crystallin) were generated by a prokaryotic expression system and purified by liquid chromatography. The light scattering of proteins in the presence or absence of UDCA or TUDCA was measured using a spectrofluorometer set at Ex/Em = 400/400 nm. Protein blot analysis was conducted for detection of α-crystallins in the human lens WS proteins. High concentrations of UDCA and TUDCA significantly suppressed thermal aggregation of total lens WS proteins, which contained a low level of αA-/αB-crystallin. Spectroscopic analysis with each recombinant human lens crystallin indicated that the bile acids did not suppress the thermal aggregation of γC-, βB2-, αA-, or αB-crystallin. Combination of α-crystallin and bile acid (either UDCA or TUDCA) suppressed thermal aggregation of each individual crystallin as well as a non-crystallin protein, insulin. These results suggest that UDCA or TUDCA protects the chaperone activity of α-crystallin. It is believed that these two naturally occurring intermediate waste products in the lens enhance the chaperone activity of α-crystallin. This finding may lead to the development of UDCA and TUDCA as anticataract agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H (2005) Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 589(1):47–65

    Article  PubMed  CAS  Google Scholar 

  • Boyle DL, Takemoto L (1996) EM immunolocalization of alpha-crystallins: association with the plasma membrane from normal and cataractous human lenses. Curr Eye Res 15(5):577–582

    Article  PubMed  CAS  Google Scholar 

  • Clark JI, Huang QL (1996) Modulation of the chaperone-like activity of bovine alpha-crystallin. Proc Natl Acad Sci USA 93(26):15185–15189

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Pinheiro TJ (2002) Medicine: danger—misfolding proteins. Nature 416(6880):483–484

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Liang JJ (2002) Conformational change and destabilization of cataract gammaC-crystallin T5P mutant. FEBS Lett 513(2–3):213–216

    Article  PubMed  CAS  Google Scholar 

  • Girao H, Mota MC, Ramalho J, Pereira P (1998) Cholesterol oxides accumulate in human cataracts. Exp Eye Res 66(5):645–652

    Article  PubMed  CAS  Google Scholar 

  • Girao H, Shang F, Pereira P (2003) 7-Ketocholesterol stimulates differentiation of lens epithelial cells. Mol Vis 9:497–501

    PubMed  CAS  Google Scholar 

  • Hanukoglu I (2006) Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab Rev 38(1–2):171–196

    Article  PubMed  CAS  Google Scholar 

  • Iddon CR, Wilkinson J, Bennett AJ, Bennett J, Salter AM, Higgins JA (2001) A role for smooth endoplasmic reticulum membrane cholesterol ester in determining the intracellular location and regulation of sterol-regulatory-element-binding protein-2. Biochem J 358(Pt 2):415–422

    Article  PubMed  CAS  Google Scholar 

  • Ikesugi K, Yamamoto R, Mulhern ML, Shinohara T (2006) Role of the unfolded protein response (UPR) in cataract formation. Exp Eye Res 83(3):508–516

    Article  PubMed  CAS  Google Scholar 

  • Lampi KJ, Ma Z, Shih M, Shearer TR, Smith JB, Smith DL, David LL (1997) Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lens. J Biol Chem 272(4):2268–2275

    Article  PubMed  CAS  Google Scholar 

  • Li LK, So L, Spector A (1985) Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. J Lipid Res 26(5):600–609

    PubMed  CAS  Google Scholar 

  • Liang JJ, Li XY (1992) Spectroscopic studies on the interaction of calf lens membranes with crystallins. Exp Eye Res 54(5):719–724

    Article  PubMed  CAS  Google Scholar 

  • McFall-Ngai MJ, Ding LL, Takemoto LJ, Horwitz J (1985) Spatial and temporal mapping of the age-related changes in human lens crystallins. Exp Eye Res 41(6):745–758

    Article  PubMed  CAS  Google Scholar 

  • Mulders JW, Stokkermans J, Leunissen JA, Benedetti EL, Bloemendal H, de Jong WW (1985) Interaction of alpha-crystallin with lens plasma membranes. Affinity for MP26. Eur J Biochem 152(3):721–728

    Article  PubMed  CAS  Google Scholar 

  • Mulhern ML, Madson CJ, Danford A, Ikesugi K, Kador PF, Shinohara T (2006) The unfolded protein response in lens epithelial cells from galactosemic rat lenses. Invest Ophthalmol Vis Sci 47(9):3951–3959

    Article  PubMed  Google Scholar 

  • Mulhern ML, Madson CJ, Kador PF, Randazzo J, Shinohara T (2007) Cellular osmolytes reduce lens epithelial cell death and alleviate cataract formation in galactosemic rats. Mol Vis 13:1397–1405

    PubMed  CAS  Google Scholar 

  • Perlmutter DH (2002) Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr Res 52(6):832–836

    PubMed  Google Scholar 

  • Ridsdale A, Denis M, Gougeon PY, Ngsee JK, Presley JF, Zha X (2006) Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. Mol Biol Cell 17(4):1593–1605

    Article  PubMed  CAS  Google Scholar 

  • Sun TX, Liang JJ (1998) Intermolecular exchange and stabilization of recombinant human alphaA- and alphaB-crystallin. J Biol Chem 273(1):286–290

    Article  PubMed  CAS  Google Scholar 

  • Sun TX, Das BK, Liang JJ (1997) Conformational and functional differences between recombinant human lens alphaA- and alphaB-crystallin. J Biol Chem 272(10):6220–6225

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1(2):109–115

    Article  PubMed  CAS  Google Scholar 

  • Zelenka PS (1984) Lens lipids. Curr Eye Res 3(11):1337–1359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. J. Horwitz for his valuable suggestions regarding chemical chaperones. This work was supported in part by the RPB, funding from the Department of Ophthalmology, and NIH grants EY013968 (JL) and EY0180172 (TS).

Conflict of interest

There are no conflicts of interest among the authors of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimichi Shinohara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S., Liang, J.J.N., Mulhern, M.L. et al. Cholesterol-derived bile acids enhance the chaperone activity of α-crystallins. Cell Stress and Chaperones 16, 475–480 (2011). https://doi.org/10.1007/s12192-011-0259-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0259-5

Keywords

Navigation