Skip to main content
Log in

Response of mice to continuous 5-day passive hyperthermia resembles human heat acclimation

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Chronic repeated exposure to hyperthermia in humans results in heat acclimation (HA), an adaptive process that is attained in humans by repeated exposure to hyperthermia and is characterized by improved heat elimination and increased exercise capacity, and acquired thermal tolerance (ATT), a cellular response characterized by increased baseline heat shock protein (HSP) expression and blunting of the acute increase in HSP expression stimulated by re-exposure to thermal stress. Epidemiologic studies in military personnel operating in hot environments and elite athletes suggest that repeated exposure to hyperthermia may also exert long-term health effects. Animal models demonstrate that coincident exposure to mild hyperthermia or prior exposure to severe hyperthermia can profoundly affect the course of experimental infection and injury, but these models do not represent HA. In this study, we demonstrate that CD-1 mice continuously exposed to mild hyperthermia (ambient temperature ~37°C causing ~2°C increase in core temperature) for 5 days and then exposed to a thermal stress (42°C ambient temperature for 40 min) exhibited some of the salient features of human HA, including (1) slower warming during thermal stress and more rapid cooling during recovery and (2) increased activity during thermal stress, as well as some of the features of ATT, including (1) increased baseline expression of HSP72 and HSP90 in lung, heart, spleen, liver, and brain; and (2) blunted incremental increase in HSP72 expression following acute thermal stress. This study suggests that continuous 5-day exposure of CD-1 mice to mild hyperthermia induces a state that resembles the physiologic and cellular responses of human HA. This model may be useful for analyzing the molecular mechanisms of HA and its consequences on host responsiveness to subsequent stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson KA (1989) An introduction to numerical analysis. Wiley, New York

    Google Scholar 

  • Buckley BA, Owen ME, Hofmann GE (2001) Adjusting the thermostat: the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history. J Exp Biol 204:3571–3579

    PubMed  CAS  Google Scholar 

  • Chen Q, Fisher DT, Clancy KA, Gauguet JM, Wang WC, Unger E, Rose-John S, von Andrian UH, Baumann H, Evans SS (2006) Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol 7:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Christians ES, Yan LJ, Benjamin IJ (2002) Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 30:S43–S50

    Article  CAS  Google Scholar 

  • Chu EK, Ribeiro SP, Slutsky AS (1997) Heat stress increases survival rates in lipopolysaccharide-stimulated rats. Crit Care Med 25:1727–1732

    Article  PubMed  CAS  Google Scholar 

  • Dietz TJ, Somero GN (1992) The threshold induction temperature of the 90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proc Natl Acad Sci U S A 89:3389–3393

    Article  PubMed  CAS  Google Scholar 

  • Ellis G, Carlson D, Hester L, Bagby G, Singh IS, Hasday J (2005) G-CSF, but not corticosterone mediates circulating neutrophilia induced by febrile-range hyperthermia. J Appl Physiol 98:1799–1804

    Article  PubMed  CAS  Google Scholar 

  • Esher RJ, Wolfe JL (1979) The effects of temperature and housing on water balance in a burrowing mouse, Peromyscus polionotus. J Comp Physiol B 133:241–245

    Article  Google Scholar 

  • Evans SS, Wang WC, Bain MD, Burd R, Ostberg JR, Repasky EA (2001) Fever-range hyperthermia dynamically regulates lymphocyte delivery to high endothelial venules. Blood 97:2727–2733

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald L (1991) Overtraining increases the susceptibility to infection. Int J Sports Med 12 Suppl 1:S5–S8

    Article  PubMed  CAS  Google Scholar 

  • Flanagan SW, Ryan AJ, Gisolfi CV, Moseley PL (1995) Tissue-specific HSP70 response in animals undergoing heat stress. Am J Physiol 268:R28–R32

    PubMed  CAS  Google Scholar 

  • Gleeson M, McDonald WA, Cripps AW, Pyne DB, Clancy RL, Fricker PA (1995) The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol 102:210–216

    Article  PubMed  CAS  Google Scholar 

  • Hasday JD, Bannerman D, Sakarya S, Cross AS, Singh IS, Howard D, Drysdale B-E, Goldblum SE (2001) Exposure to febrile temperature modifies endothelial cell response to tumor necrosis factor-α. J Appl Physiol 90:90–98

    PubMed  CAS  Google Scholar 

  • Hasday J, Garrison A, Singh I, Standiford T, Ellis G, Rao S, He J-R, Rice P, Frank M, Goldblum S, Viscardi R (2003) Febrile-range hyperthermia augments pulmonary neutrophil recruitment and amplifies pulmonary oxygen toxicity. Am J Pathol 162:2005–2017

    Article  PubMed  CAS  Google Scholar 

  • Herman CP (1993) Effects of heat on appetite. In: Marriott BM (ed) Nutritional needs in hot environment. National Academy Press, Washington, pp 187–213

    Google Scholar 

  • Horowitz M, Meiri U (1993) Central and peripheral contributions to control of heart rate during heat acclimation. Pflugers Arch 422:386–392

    Article  PubMed  CAS  Google Scholar 

  • Horowitz M, Eli-Berchoer L, Wapinski I, Friedman N, Kodesh E (2004) Stress-related genomic responses during the course of heat acclimation and its association with ischemic-reperfusion cross-tolerance. J Appl Physiol 97:1496–1507

    Article  PubMed  CAS  Google Scholar 

  • Javadpour M, Kelly CJ, Chen G, Stokes K, Leahy A, Bouchier-Hayes DJ (1998) Thermotolerance induces heat shock protein 72 expression and protects against ischaemia–reperfusion-induced lung injury. Br J Surg 85:943–946

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, DeTolla L, Kalvakolanu I, Fitzgerald B, Hasday JD (1999a) Fever upregulates expression of pyrogenic cytokines in endotoxin-challenged mice. Am J Physiol 276:R1653–R1660

    PubMed  CAS  Google Scholar 

  • Jiang Q, DeTolla L, Kalvakolanu I, Van Roojien N, Singh IS, Fitzgerald B, Cross AS, Hasday JD (1999b) Febrile range temperature modifies early systemic TNFα expression in mice challenged with bacterial endotoxin. Infect Immun 67:1539–1546

    PubMed  CAS  Google Scholar 

  • Jiang Q, Cross AS, Singh IS, Chem TT, Viscardi RM, Hasday JD (2000) Febrile core temperature is essential for optimal host defense in bacterial peritonitis. Infect Immun 68:1265–1270

    Article  PubMed  CAS  Google Scholar 

  • Linde F (1987) Running and upper respiratory tract infections. Scand J Sport Sci 9:21–23

    Google Scholar 

  • Lund SG, Ruberte MR, Hofmann GE (2006) Turning up the heat: the effects of thermal acclimation on the kinetics of hsp70 gene expression in the eurythermal goby, Gillichthys mirabilis. Comp Biochem Physiol A Mol Integr Physiol 143:435–446

    Article  PubMed  Google Scholar 

  • Magalhaes F, Amorim FT, Passos RL, Fonseca MA, Oliveira KP, Lima MR, Guimaraes JB, Ferreira-Junior JB, Martini AR, Lima NR, Soares DD, Oliveira EM, Rodrigues LO (2010) Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans. Cell Stress Chaperones 15:885–895

    Article  CAS  Google Scholar 

  • Maloyan A, Palmon A, Horowitz M (1999) Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. Am J Physiol 276:R1506–R1515

    PubMed  CAS  Google Scholar 

  • Manthous C, Hall J, Olson D, Singh M, Chatila W, Pohlman A, Kushner R, Schmidt G, Wood L (1995) Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med 151:10–14

    PubMed  CAS  Google Scholar 

  • Marshall H, Campbell S, Roberts C, Nimmo M (2007) Human physiological and heat shock protein 72 adaptations during the initial phase of humid-heat acclimation. J Therm Biol 32:341–348

    Article  CAS  Google Scholar 

  • McClung JP, Hasday JD, He JR, Montain SJ, Cheuvront SN, Sawka MN, Singh IS (2008) Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. Am J Physiol Regul Integr Comp Physiol 294:R185–R191

    Article  PubMed  CAS  Google Scholar 

  • Meyer TN, da Silva AL, Vieira EC, Alves AC (2000) Heat shock response reduces mortality after severe experimental burns. Burns 26:233–238

    Article  PubMed  CAS  Google Scholar 

  • Nielsen B, Hales JR, Strange S, Christensen NJ, Warberg J, Saltin B (1993) Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 460:467–485

    PubMed  CAS  Google Scholar 

  • Ostberg JR, Taylor SL, Baumann H, Repasky EA (2000) Regulatory effects of fever-range whole-body hyperthermia on the LPS-induced acute inflammatory response. J Leukoc Biol 68:815–820

    PubMed  CAS  Google Scholar 

  • Ostberg JR, Gellin C, Patel R, Repasky EA (2001) Regulatory potential of fever-range whole body hyperthermia on langerhans cells and lymphocytes in an antigen-dependent cellular immune response. J Immunol 167:2666–2670

    PubMed  CAS  Google Scholar 

  • Peters EM, Bateman ED (1983) Ultramarathon running and upper respiratory tract infections. An epidemiological survey. S Afr Med J 64:582–584

    PubMed  CAS  Google Scholar 

  • Peters EM, Goetzsche JM, Grobbelaar B, Noakes TD (1993) Vitamin C supplementation reduces the incidence of postrace symptoms of upper-respiratory-tract infection in ultramarathon runners. Am J Clin Nutr 57:170–174

    PubMed  CAS  Google Scholar 

  • Rice P, Martin E, He J-R, Frank M, DeTolla L, Hester L, O’Neill T, Manka C, Singh I, Hasday J (2005) Febrile-range hyperthermia augments neutrophil accumulation and enhances lung injury in experimental gram-negative bacterial pneumonia. J Immunol 174:3676–3685

    PubMed  CAS  Google Scholar 

  • Riddle MS, Halvorson HA, Shiau D, Althoff J, Monteville MR, Shaheen H, Horvath EP, Armstrong AW (2007) Acute gastrointestinal infection, respiratory illness, and noncombat injury among US military personnel during Operation Bright Star 2005, in Northern Egypt. J Travel Med 14:392–401

    Article  PubMed  Google Scholar 

  • Roop SA, Niven AS, Calvin BE, Bader J, Zacher LL (2007) The prevalence and impact of respiratory symptoms in asthmatics and nonasthmatics during deployment. Mil Med 172:1264–1269

    PubMed  Google Scholar 

  • Sawka MN, Young AJ (2005) Physiological systems and their responses to conditions of heat and cold. In: Tipton CM, Sawka MN, Tate CA, Trejung RL (eds) ACSM’s advanced exercise physiology textbook. Lippincott, Williams & Wilkins, Baltimore, pp 535–563

    Google Scholar 

  • Sawka MN, Young AJ, Cadarette BS, Levine L, Pandolf KB (1985) Influence of heat stress and acclimation on maximal aerobic power. Eur J Appl Physiol Occup Physiol 53:294–298

    Article  PubMed  CAS  Google Scholar 

  • Sawka MN, Wenger CB, Pandolf KB (1996) Thermoregulatory responses to acute exercise-heat stress and heat acclimation. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology section 4, environmental physiology. Oxford University Press, New York, pp 157–185

    Google Scholar 

  • Sawka MN, Latzka WA, Montain SJ, Cadarette BS, Kolka MA, Kraining KK, Gonzalez RR (2001) Physiologic tolerance to uncompensable heat: intermittent exercise, field vs laboratory. Med Sci Sports Exerc 33:422–430

    Article  PubMed  CAS  Google Scholar 

  • Schumacker P, Rowland J, Saltz S, Nelson D, Wood L (1987) Effects of hyperthermia and hypothermia on oxygen extraction by tissues during hypovolemia. J Appl Physiol 63:1246–1252

    PubMed  CAS  Google Scholar 

  • Shein NA, Grigoriadis N, Horowitz M, Umschwief G, Alexandrovich AG, Simeonidou C, Grigoriadis S, Touloumi O, Shohami E (2008) Microglial involvement in neuroprotection following experimental traumatic brain injury in heat-acclimated mice. Brain Res 1244:132–141

    Article  PubMed  CAS  Google Scholar 

  • Singh IS, Gupta A, Nagarsekar A, Cooper Z, Manka C, Hester L, Benjamin IJ, He J-E, Hasday JD (2008) Heat shock co-activates interleukin-8 transcription. Am J Respir Cell Mol Biol 39:235–242

    Article  PubMed  CAS  Google Scholar 

  • Slutsky AS (2002) Hot new therapy for sepsis and the acute respiratory distress syndrome. J Clin Invest 110:737–739

    PubMed  CAS  Google Scholar 

  • Sonna LA, Wenger CB, Flinn S, Sheldon HK, Sawka MN, Lilly CM (2004) Exertional heat injury and gene expression changes: a DNA microarray analysis study. J Appl Physiol 96:1943–1953

    Article  PubMed  CAS  Google Scholar 

  • Spielman RS, Lyman CP (1971) Thermal bradycardia in the mildly stressed rat. Am J Physiol 221:948–951

    PubMed  CAS  Google Scholar 

  • Tomanek L, Somero GN (2002) Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. J Exp Biol 205:677–685

    PubMed  CAS  Google Scholar 

  • Villar J, Edelson JD, Post M, Mullen JB, Slutsky AS (1993) Induction of heat stress proteins is associated with decreased mortality in an animal model of acute lung injury. Am Rev Respir Dis 147:177–181

    PubMed  CAS  Google Scholar 

  • Yamada PM, Amorim FT, Mosley PL, Robergs RR, Schneider SM (2007) Effect of heat acclimation on heat shock protein 72 and interleukin-10 in humans. J Appl Physiol 103:1196–1204

    Article  PubMed  CAS  Google Scholar 

Download references

Grants

Supported by NIH grants GM069431 (ISS) and GM066855, HL69057 and HL085256 (JDH), and by VA Merit Review grants to JDH and ISS.

Conflicts of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Hasday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sareh, H., Tulapurkar, M.E., Shah, N.G. et al. Response of mice to continuous 5-day passive hyperthermia resembles human heat acclimation. Cell Stress and Chaperones 16, 297–307 (2011). https://doi.org/10.1007/s12192-010-0240-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-010-0240-8

Keywords

Navigation