Skip to main content
Log in

Adjuvant activity of GP96 C-terminal domain towards Her2/neu DNA vaccine is fusion direction-dependent

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The Her2 is one of tumor-associated antigens (TAA), regarded as an ideal target of immunotherapy. DNA encoding full-length or truncated rat Her2/neu have shown protective and therapeutics potentials against Her2/neu-expressing mammary tumors. However, the efficacy of active vaccination is limited since Her2 is a self-tolerated antigen. Hence, new strategies are required to enhance both the quality and quantity of the immune response against Her2-expressing tumors. Many studies have used Her2/neu gene with cytokine or other molecules involved in regulation of immune response to enhance the potency of Her2/neu DNA vaccines. Some studies fused adjuvant gene to C-terminal domain of Her2/neu gene, while others fused the adjuvant gene N-terminally to Her2/neu gene, but no comparison on how direction of fusion could affect efficiency of DNA vaccine has ever been made. Based on previous reports demonstrating potent adjuvant activity of gp96 C-terminal domain, we chose it as adjuvant. The aim of this study was to investigate if direction of fusion could affect adjuvant activity of gp96 C-terminal domain or potency of Her2/neu DNA vaccination. To do so, we fused C-terminal domain of gp96 to downstream or C-terminal end of transmembrane and extracellular domain (TM+ECD) of rat Her2/neu and resultant immune response to DNA vaccination was evaluated. The results were compared with that of N-terminally fusion of gp96 C-terminal domain to TM+ECD of rat Her2/neu. Our results revealed that adjuvant activity of gp96 C-terminal domain is enhanced when fused N-terminally to TM+ECD of rat Her2/neu. It suggests that adjuvant activity of gp96 C-terminal domain towards Her2/neu is fusion direction-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amici A, Venanzi FM, Concetti A (1998) Genetic immunizationagainst neu/erbB2 transgenic breast cancer. Cancer Immunol Immunother 47:183–190

    Article  CAS  PubMed  Google Scholar 

  • Binder RJ, Vatner R, Srivastava P (2004) The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64:442–451

    Article  CAS  PubMed  Google Scholar 

  • Boyle JS, Brady JL, Koniaras C, Lew AM (1998) Inhibitory effect of lipopolysaccharide on immune response after DNA immunization is route dependent. DNA Cell Biol 17(4):343–348

    Article  CAS  PubMed  Google Scholar 

  • Chaput N, Darrasse-Jèze G, Bergot AS, Cordier C, Ngo-Abdalla S, Klatzmann D et al (2007) Regulatory T cells prevent CD8 T cell maturation by inhibiting CD4 Th cells at tumor sites. J Immunol 179:4969–4978

    CAS  PubMed  Google Scholar 

  • Curcio C, Di Carlo E, Clynes R, Smyth MJ, Boggio K, Quaglino E et al (2003) Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. J Clin Invest 111:1161–1170

    CAS  PubMed  Google Scholar 

  • Hemmi H, Akira S (2005) TLR signalling and the function of dendritic cells. Chem Immunol Allergy 86:120–135

    Article  CAS  PubMed  Google Scholar 

  • Hoeller D, Dikic I (2009) Review article targeting the ubiquitin system in cancer therapy. Nature 458:438–444

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Kobayashi M, Mai M, Suzuki T, Ooi A (1997) Amplification of the c-erbB-2 (Her-2/neu) gene in gastric cancer cells. Am J Pathol 151:761–768

    CAS  PubMed  Google Scholar 

  • Kim JH, Majumder N, Lin H, Chen J, Falo LD Jr, You Z (2005) Enhanced immunity by NeuEDhsp70 DNA vaccine is needed to combat an aggressive spontaneous metastatic breast cancer. Mol Ther 11:941–949

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Merritt RE, Mahtabifard A, Yamada R, Kikuchi T, Crystal RG et al (2003) Intratumoral expression of macrophage-derived chemokine induces CD4+ T cell-independent antitumor immunity in mice. J Immunother 26:117–129

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Chou CW, Shiau AL, Tu CF, Ko TM, Chen YL et al (2004) Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther 10:290–301

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li X, Qiu L, Zhang X, Chen L, Cao S et al (2009) Treg suppress CTL responses upon immunization with HSP gp96. Eur J Immunol 39:3110–3120

    Article  CAS  PubMed  Google Scholar 

  • Lutsiak ME, Tagaya Y, Adams AJ, Schlom J, Sabzevari H (2008) Tumor-induced impairment of TCR signaling results in compromised functionality of tumor-infiltrating regulatory T cells. Immunol 180:5871–5881

    CAS  Google Scholar 

  • Nagata Y, Furugen R, Hiasa A, Ikeda H, Ohta N, Furukawa K et al (1997) Peptides derived from a wild-type murine protooncogene c-erbB-2/HER2/2 neu can induce CTL and tumor suppression in syngeneic hosts. J Immunol 159:1336–1343

    CAS  PubMed  Google Scholar 

  • Nizar S, Copier J, Meyer B, Bodman-Smith M, Galustian C, Kumar D et al (2009) T-regulatory cell modulation: the future of cancer immunotherapy? Br J Cancer 100:1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Orlandi F, Venanzi FM, Concetti A, Yamauchi H, Tiwari S, Norton L et al (2007) Antibody and CD8+ T cell responses against HER2/neu required for tumor eradication after DNA immunization with a Flt-3 ligand fusion vaccine. Clin Cancer Res 13:6195–6203

    Article  CAS  PubMed  Google Scholar 

  • Pakravan N, Soleimanjahi H, Hassan ZM (2010a) GP96 C-terminal improves Her2/neu DNA vaccine. J Gene Med 12:345–353

    Article  CAS  PubMed  Google Scholar 

  • Pakravan N, Soudi S, Hassan ZM (2010b) N-terminally fusion of Her2/neu to HSP70 decreases efficiency of Her2/neu DNA vaccine. Cell Stress Chaperones 15(5):631–638

    Google Scholar 

  • Pakravan N, Langroudi L, Hajimoradi M, Hassan ZM (2010c) Co-administration of GP96 and Her2/neu DNA vaccine in a Her2 breast cancer model. Cell Stress Chaperones June 12, in press

  • Quaglino E, Mastini C, Iezzi M, Forni G, Musiani P, Klapper LN et al (2005) The adjuvant activity of BAT antibody enables DNA vaccination to inhibit the progression of established autochthonous Her-2/neu carcinomas in BALB/c mice. Vaccine 23:3280–3287

    Article  CAS  PubMed  Google Scholar 

  • Ratthé C, Ennaciri J, Garcês Gonçalves DM, Chiasson S, Girard D (2009) Interleukin (IL)-4 induces leukocyte infiltration in vivo by an indirect mechanism. Mediators Inflamm 2009:1–10

    Article  Google Scholar 

  • Rolla S, Marchini C, Malinarich S, Quaglino E, Lanzardo S, Montani M et al (2008) Protective immunity against neu-positive carcinomas elicited by electroporation of plasmids encoding decreasing fragments of rat neu extracellular domain. Hum Gene Ther 19(3):229–240

    Article  CAS  PubMed  Google Scholar 

  • Rovero S, Amici A, Carlo ED, Bei R, Nanni P, Quaglino E et al (2000) DNA vaccination against rat Her-2/neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 165:5133–5142

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 138–161

    Google Scholar 

  • Schuler T, Qin Z, Ibe S, Noben-Trauth N, Blankenstein T (1999) T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice. J Exp Med 189:803–810

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al (1989) Studies of the Her-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  CAS  PubMed  Google Scholar 

  • Wei WZ, Shi WP, Galy A, Lichlyter D, Hernandez S, Groner B et al (1999) Protection against mammary tumor growth by vaccination with full length, modified human ErbB-2 DNA. Int J Cancer 81:748–754

    Article  CAS  PubMed  Google Scholar 

  • Wirth JJ, Kierszenbaum F, Zlotnik A (1989) Effects of IL-4 on macrophage functions: increased uptake and killing of a protozoan parasite (Trypanosoma cruzi). Immunol 66:296–301

    CAS  Google Scholar 

  • Yang Y, Huang CT, Huang X, Pardoll DM (2004) Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 5:508–515

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Federica Cavallo (Turin University, Italy) and Professor Brian Seed (Harvard Medical School, USA) for kindly providing us with rat Her2 and human gp96 genes. Our gratitude is also conveyed towards Dr. Majid Tebyanian, Dr. Mehdi Mahdavi (Tarbiat Modares University, Tehran, Iran), and Dr. Farhad Riazi (Pasteur Institute, Tehran, Iran) for their expert advice during the work.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuhair Mohammad Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakravan, N., Hashemi, S.M. & Hassan, Z.M. Adjuvant activity of GP96 C-terminal domain towards Her2/neu DNA vaccine is fusion direction-dependent. Cell Stress and Chaperones 16, 41–48 (2011). https://doi.org/10.1007/s12192-010-0219-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-010-0219-5

Keywords

Navigation