Skip to main content
Log in

Geldanamycin selectively targets the nascent form of ERBB3 for degradation

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat shock protein 90 (HSP90) targets a broad spectrum of client proteins with divergent modes of interaction and consequences. The homologous epidermal growth factor receptor (EGFR) and ERBB2 receptors as well as kinase-deficient mutants thereof differ in their requirement for HSP90 in the nascent versus mature state of the receptor. Specific features of the kinase domain have been implicated for the selective association of HSP90 with mature ERBB2. We evaluated the role of HSP90 for the homologous ERBB3 receptor. ERBB3 is naturally kinase deficient, a central mediator in cell survival and stress response and the primary dimerization partner for ERBB2 in signaling. Cellular studies indicate that, similar to EGFR, the geldanamycin (GA) sensitivity of ERBB3 and HSP90 binding resides in the nascent state and is dependent on the presence of the kinase domain of ERBB3. Furthermore, despite its intrinsic lack of kinase activity and in contrast to the reported GA sensitivity of mature and kinase-deficient EGFR, the GA sensitivity of the nascent state of ERBB3 appears to be exclusive. Geldanamycin disrupts the interaction of ERBB3 and HSP90 and inhibits ERBB3 maturation at an early stage of synthesis, prior to export from the ER. Studies with a photo-convertible fusion protein of ERBB3 suggest geldanamycin sensitivity at a later stage in maturation, possibly through the putative role of HSP90 in structural proofreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar Z, Akita RW, Finn RS et al (1999) Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene 18:6050–6062

    Article  CAS  PubMed  Google Scholar 

  • Austin CD, De Maziere AM, Pisacane PI et al (2004) Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15:5268–5282

    Article  CAS  PubMed  Google Scholar 

  • Chavany C, Mimnaugh E, Miller P et al (1996) p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J Biol Chem 271:4974–4977

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Alroy I, Lavi S et al (2002) Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. Embo J 21:2407–2417

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Gan J, Mosesson Y, Vereb G, Szollosi J, Yarden Y (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep 5:1165–1170

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Harari D, Shohat G et al (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281:14361–14369

    Article  CAS  PubMed  Google Scholar 

  • Dent P, Yacoub A, Contessa J et al (2003) Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 159:283–300

    Article  CAS  PubMed  Google Scholar 

  • Dote H, Cerna D, Burgan WE, Camphausen K, Tofilon PJ (2005) ErbB3 expression predicts tumor cell radiosensitization induced by Hsp90 inhibition. Cancer Res 65:6967–6975

    Article  CAS  PubMed  Google Scholar 

  • Fisher DL, Mandart E, Doree M (2000) Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. Embo J 19:1516–1524

    Article  CAS  PubMed  Google Scholar 

  • Giannini A, Bijlmakers MJ (2004) Regulation of the Src family kinase Lck by Hsp90 and ubiquitination. Mol Cell Biol 24:5667–5676

    Article  CAS  PubMed  Google Scholar 

  • Guy PM, Platko JV, Cantley LC, Cerione RA, KLr C (1994) Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci USA 91:8132–8136

    Article  CAS  PubMed  Google Scholar 

  • Jackson CL, Casanova JE (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10:60–67

    Article  CAS  PubMed  Google Scholar 

  • Kani K, Warren CM, Kaddis CS, Loo JA, Landgraf R (2005) Oligomers of ERBB3 have two distinct interfaces that differ in their sensitivity to disruption by heregulin. J Biol Chem 280:8238–8247

    Article  CAS  PubMed  Google Scholar 

  • Landgraf R, Eisenberg D (2000) Heregulin reverses the oligomerization of HER3. Biochemistry 39:8503–8511

    Article  CAS  PubMed  Google Scholar 

  • Lerdrup M, Hommelgaard AM, Grandal M, van Deurs B (2006) Geldanamycin stimulates internalization of ErbB2 in a proteasome-dependent way. J Cell Sci 119:85–95

    Article  CAS  PubMed  Google Scholar 

  • Lerdrup M, Bruun S, Grandal MV, Roepstorff K, Kristensen MM, Hommelgaard AM, van Deurs B (2007) Endocytic down-regulation of ErbB2 is stimulated by cleavage of its C-terminus. Mol Biol Cell 18:3656–3666

    Article  CAS  PubMed  Google Scholar 

  • Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. Embo J 17:6879–6887

    Article  CAS  PubMed  Google Scholar 

  • Millson SH, Truman AW, King V, Prodromou C, Pearl LH, Piper PW (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4:849–860

    Article  CAS  PubMed  Google Scholar 

  • Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Mizuno S, Uehara Y (1994) Accelerated degradation of 160 kDa epidermal growth factor (EGF) receptor precursor by the tyrosine kinase inhibitor herbimycin A in the endoplasmic reticulum of A431 human epidermoid carcinoma cells. Biochem J 301(Pt 1):63–68

    CAS  PubMed  Google Scholar 

  • Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci USA 94:12949–12956

    Article  CAS  PubMed  Google Scholar 

  • Okabe M, Uehara Y, Noshima T, Itaya T, Kunieda Y, Kurosawa M (1994) In vivo antitumor activity of herbimycin A, a tyrosine kinase inhibitor, targeted against BCR/ABL oncoprotein in mice bearing BCR/ABL-transfected cells. Leuk Res 18:867–873

    Article  CAS  PubMed  Google Scholar 

  • Park E, Baron R, Landgraf R (2008) Higher-order association states of cellular ERBB3 probed with photo-cross-linkable aptamers. Biochemistry 47:11992–12005

    Article  CAS  PubMed  Google Scholar 

  • Pashtan I, Tsutsumi S, Wang S, Xu W, Neckers L (2008) Targeting Hsp90 prevents escape of breast cancer cells from tyrosine kinase inhibition. Cell Cycle 7:2936–2941

    CAS  PubMed  Google Scholar 

  • Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67:2932–2937

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Silverstein AM, Galigniana MD (1999) A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cell Signal 11:839–851

    Article  CAS  PubMed  Google Scholar 

  • Prince T, Matts RL (2004) Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37. J Biol Chem 279:39975–39981

    Article  CAS  PubMed  Google Scholar 

  • Prince T, Matts RL (2005) Exposure of protein kinase motifs that trigger binding of Hsp90 and Cdc37. Biochem Biophys Res Commun 338:1447–1454

    Article  CAS  PubMed  Google Scholar 

  • Qiu C, Tarrant MK, Choi SH et al (2008) Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Structure 16:460–467

    Article  CAS  PubMed  Google Scholar 

  • Roe SM, Ali MM, Meyer P et al (2004) The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116:87–98

    Article  CAS  PubMed  Google Scholar 

  • Sakagami M, Morrison P, Welch WJ (1999) Benzoquinoid ansamycins (herbimycin A and geldanamycin) interfere with the maturation of growth factor receptor tyrosine kinases. Cell Stress Chaperones 4:19–28

    Article  CAS  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  Google Scholar 

  • Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, Moasser MM (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445:437–441

    Article  CAS  PubMed  Google Scholar 

  • Sierke SL, Cheng K, Kim HH, Koland JG (1997) Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein. Biochem J 322(Pt 3):757–763

    CAS  PubMed  Google Scholar 

  • Smith DF (1998) Sequence motifs shared between chaperone components participating in the assembly of progesterone receptor complexes. Biol Chem 379:283–288

    Article  CAS  PubMed  Google Scholar 

  • Stamos J, Sliwkowski MX, Eigenbrot C (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277:46265–46272

    Article  CAS  PubMed  Google Scholar 

  • Tikhomirov O, Carpenter G (2003) Identification of ErbB-2 kinase domain motifs required for geldanamycin-induced degradation. Cancer Res 63:39–43

    CAS  PubMed  Google Scholar 

  • Vaughan CK, Mollapour M, Smith JR et al (2008) Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol Cell 31:886–895

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Venable J, LaPointe P et al (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127:803–815

    Article  CAS  PubMed  Google Scholar 

  • Warren CM, Kani K, Landgraf R (2006) The N-terminal domains of neuregulin 1 confer signal attenuation. J Biol Chem 281:27306–27316

    Article  CAS  PubMed  Google Scholar 

  • Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    Article  CAS  PubMed  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp 60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328

    Article  CAS  PubMed  Google Scholar 

  • Wood ER, Truesdale AT, McDonald OB et al (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64:6652–6659

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276:3702–3708

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L (2002a) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA 99:12847–12852

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Mimnaugh EG, Kim JS, Trepel JB, Neckers LM (2002b) Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2. Cell Stress Chaperones 7:91–96

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Yuan X, Xiang Z, Mimnaugh E, Marcu M, Neckers L (2005) Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat Struct Mol Biol 12:120–126

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Yuan X, Beebe K, Xiang Z, Neckers L (2007) Loss of Hsp90 association up-regulates Src-dependent ErbB2 activity. Mol Cell Biol 27:220–228

    Article  CAS  PubMed  Google Scholar 

  • Yun BG, Matts RL (2005) Hsp90 functions to balance the phosphorylation state of Akt during C2C12 myoblast differentiation. Cell Signal 17:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gurskaya NG, Merzlyak EM et al (2007) Method for real-time monitoring of protein degradation at the single cell level. Biotechniques 42:446, 448, 450

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Davey M, Hsu YC et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727

    Article  CAS  PubMed  Google Scholar 

  • Zheng FF, Kuduk SD, Chiosis G, Munster PN, Sepp-Lorenzino L, Danishefsky SJ, Rosen N (2000) Identification of a geldanamycin dimer that induces the selective degradation of HER-family tyrosine kinases. Cancer Res 60:2090–2094

    CAS  PubMed  Google Scholar 

  • Zhou P, Fernandes N, Dodge IL et al (2003) ErbB2 degradation mediated by the co-chaperone protein CHIP. J Biol Chem 278:13829–13837

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Walter Scott for critical reading and suggestions during the writing of this manuscript and members of the Shuai lab at UCLA for help with qPCR analysis. This work was supported by funding from the National Institutes of Health (RL, CA098881-01A1, CA98881-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Landgraf.

Additional information

This work was supported by funding from the National Institutes of Health (RL, CA098881).

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Ribbon diagram and surface charge representation of the kinase domains of EGFR in the active conformation (1M17, Stamos et al. 2002) and lapatinib-stabilized inactive conformation (1XKK, Wood et al. 2004). Large segments (outlined in purple) are not resolved in the inactive conformation, making surface charge projections of this portion of the kinase domain inaccurate. However, the area around the αC-β4 loop is resolved and retains the characteristic negative surface charge projection, associated with a failure of mature EGFR to bind HSP90. (JPEG 4674 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerbin, C.S., Landgraf, R. Geldanamycin selectively targets the nascent form of ERBB3 for degradation. Cell Stress and Chaperones 15, 529–544 (2010). https://doi.org/10.1007/s12192-009-0166-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0166-1

Keywords

Navigation