Skip to main content
Log in

Stress response in tardigrades: differential gene expression of molecular chaperones

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Semi-terrestrial tardigrades exhibit a remarkable tolerance to desiccation by entering a state called anhydrobiosis. In this state, they show a strong resistance against several kinds of physical extremes. Because of the probable importance of stress proteins during the phases of dehydration and rehydration, the relative abundance of transcripts coding for two α-crystallin heat-shock proteins (Mt-sHsp17.2 and Mt-sHsp19.5), as well for the heat-shock proteins Mt-sHsp10, Mt-Hsp60, Mt-Hsp70 and Mt-Hsp90, were analysed in active and anhydrobiotic tardigrades of the species Milnesium tardigradum. They were also analysed in the transitional stage (I) of dehydration, the transitional stage (II) of rehydration and in heat-shocked specimens. A variable pattern of expression was detected, with most candidates being downregulated. Gene transcripts of one Mt-hsp70 isoform in the transitional stage I and Mt-hsp90 in the anhydrobiotic stage were significantly upregulated. A high gene expression (778.6-fold) was found for the small α-crystallin heat-shock protein gene Mt-sHsp17.2 after heat shock. We discuss the limited role of the stress-gene expression in the transitional stages between the active and anhydrobiotic tardigrades and other mechanisms which allow tardigrades to survive desiccation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alamillo J, Almoguera C, Bartels D, Jordano J (1995) Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol Biol 29:1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bahrndorff S, Tunnacliffe A, Wise MJ, McGee B, Holmstrup M, Loeschcke V (2008) Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola. J Insect Physiol 55:210–217

    Article  CAS  Google Scholar 

  • Baumann H (1922) Die Anabiose der Tardigraden. Zool Jahrb Abt Allg Zool Physiol Tiere 45:501–556

    Google Scholar 

  • Bonato MCM, Silva AM, Gomes SL, Maia JCC, Juliani MH (1987) Differential expression of heat-shock proteins and spontaneous synthesis of HSP70 during the life cycle of Blastocladiella emersonii. Eur J Biochem 163:211–220

    Article  PubMed  CAS  Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. PNAS 104:18073–18078

    Article  PubMed  Google Scholar 

  • Chen S, Glazer I, Gollop N, Cash P, Argo E, Innes A, Stewart E, Davidson I, Wilson MJ (2006) Proteomic analysis of the entomopathogenic nematode Steinernema feltiae IS-6 IJs under evaporative and osmotic stresses. Mol Biochem Parasitol 145:195–204

    Article  PubMed  CAS  Google Scholar 

  • Cherkasova V, Ayyadevara S, Egilmez N, Reis RS (2000) Diverse Caenorhabditis elegans genes that are upregulated in dauer larvae also show elevated transcript levels in long-lived, aged, or starved adults. J Mol Biol 300:433–448

    Article  PubMed  CAS  Google Scholar 

  • Clegg JS, Jackson SA, Liang P, MacRae TH (1995) Nuclear-cytoplasmic translocations of protein p26 during aerobic-anoxic transitions in embryos of artemia franciscana. Exp Cell Res 219:1–7

    Article  PubMed  CAS  Google Scholar 

  • Crowe LM (2002) Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Physiol A Comp Physiol 131:505–513

    Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    Article  PubMed  CAS  Google Scholar 

  • de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS ONE 2:e898

    Article  PubMed  CAS  Google Scholar 

  • Denlinger DL, Lee RE, Yocum GD, Kukal O (1992) Role of chilling in the acquisition of cold tolerance and the capacitation to express stress proteins in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 21:271–280

    Article  CAS  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    Article  PubMed  CAS  Google Scholar 

  • Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  PubMed  CAS  Google Scholar 

  • Gkouvitsas T, Kontogiannatos D, Kourti A (2008) Differential expression of two small Hsps during diapause in the corn stalk borer Sesamia nonagrioides (Lef.). J Insect Physiol 54:1503–1510

    Article  PubMed  CAS  Google Scholar 

  • Goto SG, Kimura MT (2004) Heat-shock-responsive genes are not involved in the adult diapause of Drosophila triauraria. Gene 326:117–122

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • Guzhova I, Krallish I, Khroustalyova G, Margulis B, Rapoport A (2008) Dehydration of yeast: changes in the intracellular content of Hsp70 family proteins. Process Biochem 43:1138–1141

    Article  CAS  Google Scholar 

  • Haslbeck M (2002) sHsps and their role in the chaperone network. Cell Mol Life Sci 59:1649–1657

    Article  PubMed  CAS  Google Scholar 

  • Hayward SAL, Rinehart JP, Denlinger DL (2004) Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae. J Exp Biol 207:963–971

    Article  PubMed  CAS  Google Scholar 

  • Hengherr S, Brümmer F, Schill RO (2008a) Anhydrobiosis in tardigrades and its effects on longevity traits. J Zool (Lond) 275:216–220 1–5

    Article  Google Scholar 

  • Hengherr S, Heyer AG, Köhler H-R, Schill RO (2008b) Trehalose and anhydrobiosis in tardigrades—evidence for divergence in responses to dehydration. FEBS J 275:281–288

    PubMed  CAS  Google Scholar 

  • Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO (2009) High temperature tolerance and vitreous states in anhydrobiotic tardigrades. Physiol Biochem Zool 82(6):749–755

    Article  PubMed  CAS  Google Scholar 

  • Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Radiat Biol 82:843–848

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  • Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B Comp Biochem 146:456–460

    Article  CAS  Google Scholar 

  • Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731

    Article  PubMed  CAS  Google Scholar 

  • Keilin D (1959) The Leeuwenhoek lecture. The problem of anabiosis or latent life: history and current concept. Proc R Soc Biol Sci Ser B 150:149–191

    Article  CAS  Google Scholar 

  • Liang P, Amons R, Clegg JS, MacRae TH (1997a) Molecular characterization of a small heat shock/alpha-crystallin protein in encysted artemia embryos. J Biol Chem 272:19051–19058

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Amons R, Macrae TH, Clegg JS (1997b) Purification, structure and in vitro molecular-chaperone activity of artemia P26, a small heat-shock α-crystallin protein. Eur J Biochem 243:225–232

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Martinez G, Benoit J, Rinehart J, Elnitsky M, Lee R, Denlinger D (2009) Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J Comp Physiol B Biochem Syst Environ Physiol 179(4):481–491

    Article  CAS  Google Scholar 

  • MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. Semin Cell Dev Biol 14:251–258

    Article  PubMed  CAS  Google Scholar 

  • McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121–135

    Article  PubMed  CAS  Google Scholar 

  • McGee B, Schill RO, Tunnacliffe A (2005) Hydrophilic proteins in invertebrate anhydrobiosis. Annual Meeting of the Society for Integrative and Comparative Biology (SICB), San Diego, USA

  • Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  Google Scholar 

  • Pigoń A, Węglarska B (1955) Rate of metabolism in tardigrades during active life and anabiosis. Nature 176:121–122

    PubMed  Google Scholar 

  • Ramløv H, Westh P (1992) Survival of the cryptobiotic eutardigrade Adorybiotus coronifer during cooling to −196°C: effect of cooling rate, trehalose level, and short-term acclimation. Cryobiology 29:125–130

    Article  Google Scholar 

  • Ramløv H, Westh P (2001) Cryptobiosis in the eutardigrade Adorybiotus (Richtersius) coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool Anz 240:517–523

    Article  Google Scholar 

  • Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188:281–290

    Article  PubMed  CAS  Google Scholar 

  • Rinehart JP, Li AQ, Yocum GD, Robich RM, Hayward SA, Denlinger DL (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci U S A 104:11130–11137

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Schill RO, Fritz GB (2008) Desiccation tolerance in embryonic stages of the tardigrade Milnesium tardigradum. J Zool (Lond) 276:103–107

    Article  Google Scholar 

  • Schill RO, Steinbrück GHB, Köhler H-R (2004) Stress gene (hsp70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol 207:1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Schill RO, McGee B, Tunnacliffe A (2005). Molecular adaptation to extreme dehydration in tardigrades: Hsp70 gene expression, and putative LEA protein induction during cryptobiosis. International Symposium on the Environmental Physiology of Ectotherms and Plants (ISEPEP), Roskilde, Denmark

  • Seki K, Toyoshima M (1998) Preserving tardigrades under pressure. Nature 395:853–854

    Article  CAS  Google Scholar 

  • Sømme L (1996) Anhydrobiosis and cold tolerance in tardigrades. Eur J Entomol 93:349–357

    Google Scholar 

  • Tammariello SP, Rinehart JP, Denlinger DL (1999) Desiccation elicits heat shock protein transcription in the flesh fly, Sarcophaga crassipalpis, but does not enhance tolerance to high or low temperatures. J Insect Physiol 45:933–938

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437

    Article  CAS  Google Scholar 

  • Willsie JK, Clegg JS (2002) Small heat shock protein p26 associates with nuclear lamins and HSP70 in nuclei and nuclear matrix fractions from stressed cells. J Cell Biochem 84:601–614

    Article  PubMed  CAS  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  PubMed  CAS  Google Scholar 

  • Yocum GD, Joplin KH, Denlinger DL (1991) Expression of heat shock proteins in response to high and low temperature extremes in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 18:239–249

    Article  CAS  Google Scholar 

  • Yocum GD, Joplin KH, Denlinger DL (1998) Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem Mol Biol 28:677–682

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Eva Roth for maintaining the tardigrade culture. This study is part of the project FUNCRYPTA (0313838A, 0313838B and 0313838E), funded by the German Federal Ministry of Education and Research, BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph O. Schill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuner, A., Hengherr, S., Mali, B. et al. Stress response in tardigrades: differential gene expression of molecular chaperones. Cell Stress and Chaperones 15, 423–430 (2010). https://doi.org/10.1007/s12192-009-0158-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0158-1

Keywords

Navigation