Skip to main content

Advertisement

Log in

Circulating heat shock protein 70 (HSPA1A) in normal and pathological pregnancies

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat shock proteins (Hsps) are ubiquitous and phylogenetically conserved molecules. They are usually considered to be intracellular proteins with molecular chaperone and cytoprotective functions. However, Hsp70 (HSPA1A) is present in the peripheral circulation of healthy nonpregnant and pregnant individuals. In normal pregnancy, circulating Hsp70 levels are decreased, and show a positive correlation with gestational age and an inverse correlation with maternal age. The capacity of extracellular Hsp70 to elicit innate and adaptive proinflammatory (Th1-type) immune responses might be harmful in pregnancy and may lead to the maternal immune rejection of the fetus. Decreased circulating Hsp70 level, consequently, may promote the maintenance of immunological tolerance to the fetus. Indeed, elevated circulating Hsp70 concentrations are associated with an increased risk of several pregnancy complications. Elevated Hsp70 levels in healthy pregnant women at term might also have an effect on the onset of labor. In preeclampsia, serum Hsp70 levels are increased, and reflect systemic inflammation, oxidative stress and hepatocellular injury. Furthermore, serum Hsp70 levels are significantly higher in patients with the syndrome of hemolysis, elevated liver enzymes, and low platelet count (HELLP syndrome) than in severely preeclamptic patients without HELLP syndrome. In HELLP syndrome, elevated serum Hsp70 level indicates tissue damage (hemolysis and hepatocellular injury) and disease severity. Increased circulating Hsp70 level may not only be a marker of these conditions, but might also play a role in their pathogenesis. Extracellular Hsp70 derived from stressed and damaged, necrotic cells can elicit a proinflammatory (Th1) immune response, which might be involved in the development of the maternal systemic inflammatory response and resultant endothelial damage in preeclampsia and HELLP syndrome. Circulating Hsp70 level is also elevated in preterm delivery high-risk patients, particularly in treatment-resistant cases, and may be a useful marker for evaluating the curative effects of treatment for preterm delivery. In addition, increased circulating Hsp70 levels observed in asthmatic pregnant patients might play a connecting role in the pathomechanism of asthmatic inflammation and obstetrical/perinatal complications. Nevertheless, a prospective study should be undertaken to determine whether elevated serum Hsp70 level precedes the development of any pregnancy complication, and thus can help to predict adverse maternal or perinatal pregnancy outcome. Moreover, the role of circulating Hsp70 in normal and pathological pregnancies is not fully known, and further studies are warranted to address this important issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams KM, Yan Z, Stevens AM, Nelson JL (2007) The changing maternal “self” hypothesis: a mechanism for maternal tolerance of the fetus. Placenta 28:378–382

    CAS  PubMed  Google Scholar 

  • Adewoye AH, Klings ES, Farber HW et al (2005) Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70. Am J Hematol 78:240–242

    CAS  PubMed  Google Scholar 

  • Asea A (2005) Stress proteins and initiation of immune response: chaperokine activity of hsp72. Exerc Immunol Rev 11:34–45

    PubMed  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    CAS  PubMed  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    CAS  PubMed  Google Scholar 

  • Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, Witkin SS (2008) Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol 79:12–17

    CAS  PubMed  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    CAS  PubMed  Google Scholar 

  • Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

    CAS  PubMed  Google Scholar 

  • Bausero MA, Gastpar R, Multhoff G, Asea A (2005) Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. J Immunol 175:2900–2912

    CAS  PubMed  Google Scholar 

  • Baxter JK, Weinstein L (2004) HELLP syndrome: the state of the art. Obstet Gynecol Surv 59:838–845

    PubMed  Google Scholar 

  • Bertorelli G, Bocchino V, Zhuo X, Chetta A, Del Donno M, Foresi A, Testi R, Olivieri D (1998) Heat shock protein 70 upregulation is related to HLA-DR expression in bronchial asthma. Effects of inhaled glucocorticoids. Clin Exp Allergy 28:551–560

    CAS  PubMed  Google Scholar 

  • Bloshchinskaya IA, Davidovich IM (2003) Nitric oxide and HSP70 proteins during normal pregnancy, gestosis, and preclinical gestosis. Bull Exp Biol Med 135:241–243

    CAS  PubMed  Google Scholar 

  • Borges JC, Ramos CH (2005) Protein folding assisted by chaperones. Protein Pept Lett 12:257–261

    CAS  PubMed  Google Scholar 

  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606

    CAS  PubMed  Google Scholar 

  • Chaiworapongsa T, Erez O, Kusanovic JP et al (2008) Amniotic fluid heat shock protein 70 concentration in histologic chorioamnionitis, term and preterm parturition. J Matern Fetal Neonatal Med 21:449–461

    CAS  PubMed  Google Scholar 

  • Chen HW, Hsu C, Lu TS, Wang SJ, Yang RC (2003) Heat shock pretreatment prevents cardiac mitochondrial dysfunction during sepsis. Shock 20:274–279

    PubMed  Google Scholar 

  • Child DF, Hudson PR, Hunter-Lavin C, Mukhergee S, China S, Williams CP, Williams JH (2006) Birth defects and anti-heat shock protein 70 antibodies in early pregnancy. Cell Stress Chaperones 11:101–105

    CAS  PubMed  Google Scholar 

  • Curtin WM, Weinstein L (1999) A review of HELLP syndrome. J Perinatol 19:138–143

    CAS  PubMed  Google Scholar 

  • Csermely P (1997) Proteins, RNAs and chaperones in enzyme evolution: a folding perspective. Trends Biochem Sci 22:147–149

    CAS  PubMed  Google Scholar 

  • Csermely P (1999) Chaperone-percolator model: a possible molecular mechanism of Anfinsen-cage-type chaperones. Bioessays 21:959–965

    CAS  PubMed  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J et al (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362

    CAS  PubMed  Google Scholar 

  • DeNagel DC, Pierce SK (1992) A case for chaperones in antigen processing. Immunol Today 13:86–89

    CAS  PubMed  Google Scholar 

  • Divers MJ, Bulmer JN, Miller D, Lilford RJ (1995) Placental heat shock proteins: no immunohistochemical evidence for a differential stress response in preterm labour. Gynecol Obstet Invest 40:236–243

    Article  CAS  PubMed  Google Scholar 

  • Duckitt K, Harrington D (2005) Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 330:565

    PubMed  Google Scholar 

  • Dybdahl B, Wahba A, Lien E et al (2002) Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105:685–690

    CAS  PubMed  Google Scholar 

  • Dybdahl B, Slordahl SA, Waage A, Kierulf P, Espevik T, Sundan A (2005) Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 91:299–304

    CAS  PubMed  Google Scholar 

  • Febbraio MA, Ott P, Nielsen HB, Steensberg A, Keller C, Krustrup P, Secher NH, Pedersen BK (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544:957–962

    CAS  PubMed  Google Scholar 

  • Fehrenbach E, Niess AM, Voelker K, Northoff H, Mooren FC (2005) Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 26:552–557

    CAS  PubMed  Google Scholar 

  • Fischer CP, Hiscock NJ, Basu S, Vessby B, Kallner A, Sjoberg LB, Febbraio MA, Pedersen BK (2006) Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. J Appl Physiol 100:1679–1687

    CAS  PubMed  Google Scholar 

  • Fukushima A, Kawahara H, Isurugi C, Syoji T, Oyama R, Sugiyama T, Horiuchi S (2005) Changes in serum levels of heat shock protein 70 in preterm delivery and pre-eclampsia. J Obstet Gynaecol Res 31:72–77

    CAS  PubMed  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    CAS  PubMed  Google Scholar 

  • Gelber SE, Bongiovanni AM, Jean-Pierre C, Linhares IM, Skupski DW, Witkin SS (2007) Antibodies to the 70 kDa heat shock protein in midtrimester amniotic fluid and intraamniotic immunity. Am J Obstet Gynecol 197(278):e1–e4

    PubMed  Google Scholar 

  • Genc MR, Karasahin E, Onderdonk AB, Bongiovanni AM, Delaney ML, Witkin SS (2005) Association between vaginal 70-kd heat shock protein, interleukin-1 receptor antagonist, and microbial flora in mid trimester pregnant women. Am J Obstet Gynecol 192:916–921

    CAS  PubMed  Google Scholar 

  • Genc MR, Delaney ML, Onderdonk AB, Witkin SS (2006) Vaginal nitric oxide in pregnant women with bacterial vaginosis. Am J Reprod Immunol 56:86–90

    CAS  PubMed  Google Scholar 

  • Giffard RG, Yenari MA (2004) Many mechanisms for hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 16:53–61

    PubMed  Google Scholar 

  • Gombos T, Forhecz Z, Pozsonyi Z, Janoskuti L, Prohaszka Z (2008) Interaction of serum 70-kDa heat shock protein levels and HspA1B (+1267) gene polymorphism with disease severity in patients with chronic heart failure. Cell Stress Chaperones 13:199–206

    CAS  PubMed  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914:66–73

    CAS  PubMed  Google Scholar 

  • Haeger M, Unander M, Bengtsson A (1990) Enhanced anaphylatoxin and terminal C5b-9 complement complex formation in patients with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 76:698–702

    CAS  PubMed  Google Scholar 

  • Haeger M, Unander M, Andersson B, Tarkowski A, Arnestad JP, Bengtsson A (1996) Increased release of tumor necrosis factor-alpha and interleukin-6 in women with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Acta Obstet Gynecol Scand 75:695–701

    CAS  PubMed  Google Scholar 

  • Hageman J, Kampinga HH (2009) Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library. Cell Stress Chaperones 14:1–21

    CAS  PubMed  Google Scholar 

  • Haram K, Mortensen JH, Wollen AL (2003) Preterm delivery: an overview. Acta Obstet Gynecol Scand 82:687–704

    PubMed  Google Scholar 

  • Harkins MS, Moseley PL, Iwamoto GK (2003) Regulation of CD23 in the chronic inflammatory response in asthma: a role for interferon-gamma and heat shock protein 70 in the TH2 environment. Ann Allergy Asthma Immunol 91:567–574

    CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    CAS  PubMed  Google Scholar 

  • Hempstock J, Jauniaux E, Greenwold N, Burton GJ (2003) The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol 34:1265–1275

    CAS  PubMed  Google Scholar 

  • Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197

    CAS  PubMed  Google Scholar 

  • Hnat MD, Meadows JW, Brockman DE, Pitzer B, Lyall F, Myatt L (2005) Heat shock protein-70 and 4-hydroxy-2-nonenal adducts in human placental villous tissue of normotensive, preeclamptic and intrauterine growth restricted pregnancies. Am J Obstet Gynecol 193:836–840

    CAS  PubMed  Google Scholar 

  • House SD, Guidon PT Jr, Perdrizet GA et al (2001) Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response. Cell Stress Chaperones 6:164–171

    CAS  PubMed  Google Scholar 

  • Hung TH, Skepper JN, Burton GJ (2001) In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am J Pathol 159:1031–1043

    CAS  PubMed  Google Scholar 

  • Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH (2004a) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324:511–517

    CAS  PubMed  Google Scholar 

  • Hunter-Lavin C, Hudson PR, Mukherjee S, Davies GK, Williams CP, Harvey JN, Child DF, Williams JH (2004b) Folate supplementation reduces serum hsp70 levels in patients with type 2 diabetes. Cell Stress Chaperones 9:344–349

    CAS  PubMed  Google Scholar 

  • Ishioka S, Ezaka Y, Umemura K, Hayashi T, Endo T, Saito T (2007) Proteomic analysis of mechanisms of hypoxia-induced apoptosis in trophoblastic cells. Int J Med Sci 4:36–44

    CAS  Google Scholar 

  • Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ (2000) Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 157:2111–2122

    CAS  PubMed  Google Scholar 

  • Jauniaux E, Hempstock J, Greenwold N, Burton GJ (2003) Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol 162:115–125

    PubMed  Google Scholar 

  • Jean-Pierre C, Perni SC, Bongiovanni AM et al (2006) Extracellular 70-kd heat shock protein in mid-trimester amniotic fluid and its effect on cytokine production by ex vivo-cultured amniotic fluid cells. Am J Obstet Gynecol 194:694–698

    CAS  PubMed  Google Scholar 

  • Jin X, Wang R, Xiao C et al (2004) Serum and lymphocyte levels of heat shock protein 70 in aging: a study in the normal Chinese population. Cell Stress Chaperones 9:69–75

    CAS  PubMed  Google Scholar 

  • Jirecek S, Hohlagschwandtner M, Tempfer C, Knofler M, Husslein P, Zeisler H (2002) Serum levels of heat shock protein 70 in patients with preeclampsia: a pilot-study. Wien Klin Wochenschr 114:730–732

    CAS  PubMed  Google Scholar 

  • Jo SK, Ko GJ, Boo CS, Cho WY, Kim HK (2006) Heat preconditioning attenuates renal injury in ischemic ARF in rats: role of heat-shock protein 70 on NF-kappaB-mediated inflammation and on tubular cell injury. J Am Soc Nephrol 17:3082–3092

    CAS  PubMed  Google Scholar 

  • Johnson AD, Tytell M (1993) Exogenous HSP70 becomes cell associated, but not internalized, by stressed arterial smooth muscle cells. In Vitro Cell Dev Biol Anim 29A:807–812

    CAS  PubMed  Google Scholar 

  • Johnson AD, Berberian PA, Bond MG (1990) Effect of heat shock proteins on survival of isolated aortic cells from normal and atherosclerotic cynomolgus macaques. Atherosclerosis 84:111–119

    CAS  PubMed  Google Scholar 

  • Juretic K, Strbo N, Crncic TB, Laskarin G, Rukavina D (2004) An insight into the dendritic cells at the maternal-fetal interface. Am J Reprod Immunol 52:350–355

    PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    CAS  PubMed  Google Scholar 

  • Kimura F, Itoh H, Ambiru S et al (2004) Circulating heat-shock protein 70 is associated with postoperative infection and organ dysfunction after liver resection. Am J Surg 187:777–784

    CAS  PubMed  Google Scholar 

  • Kingston AE, Hicks CA, Colston MJ, Billingham ME (1996) A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin Exp Immunol 103:77–82

    CAS  PubMed  Google Scholar 

  • Kunes J, Poirier M, Tremblay J, Hamet P (1992) Expression of hsp70 gene in lymphocytes from normotensive and hypertensive humans. Acta Physiol Scand 146:307–311

    CAS  PubMed  Google Scholar 

  • Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    CAS  PubMed  Google Scholar 

  • Lehner T, Mitchell E, Bergmeier L et al (2000) The role of gammadelta T cells in generating antiviral factors and beta-chemokines in protection against mucosal simian immunodeficiency virus infection. Eur J Immunol 30:2245–2256

    CAS  PubMed  Google Scholar 

  • Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A (2002) Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation 106:196–201

    CAS  PubMed  Google Scholar 

  • Li DG, Gordon CB, Stagg CA, Udelsman R (1996) Heat shock protein expression in human placenta and umbilical cord. Shock 5:320–323

    CAS  PubMed  Google Scholar 

  • Li Z, Srivastava P (2004). Heat-shock proteins. Curr Protoc Immunol Appendix 1: Appendix 1T

  • Liu S, Wen SW, Demissie K, Marcoux S, Kramer MS (2001) Maternal asthma and pregnancy outcomes: a retrospective cohort study. Am J Obstet Gynecol 184:90–96

    CAS  PubMed  Google Scholar 

  • Liu Y, Li N, You L, Liu X, Li H, Wang X (2008) HSP70 is associated with endothelial activation in placental vascular diseases. Mol Med 14:561–566

    CAS  PubMed  Google Scholar 

  • Livingston JC, Ahokas R, Haddad B, Sibai BM, Awaads R (2002) Heat shock protein 70 is not increased in women with severe preeclampsia. Hypertens Pregnancy 21:123–126

    CAS  PubMed  Google Scholar 

  • Lockwood CJ, Kuczynski E (1999) Markers of risk for preterm delivery. J Perinat Med 27:5–20

    CAS  PubMed  Google Scholar 

  • Luft JC, Dix DJ (1999) Hsp70 expression and function during embryogenesis. Cell Stress Chaperones 4:162–170

    CAS  PubMed  Google Scholar 

  • Madach K, Molvarec A, Rigo J Jr, Nagy B, Penzes I, Karadi I, Prohaszka Z (2008) Elevated serum 70 kDa heat shock protein level reflects tissue damage and disease severity in the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Eur J Obstet Gynecol Reprod Biol 139:133–138

    CAS  PubMed  Google Scholar 

  • Mambula SS, Calderwood SK (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177:7849–7857

    CAS  PubMed  Google Scholar 

  • Mathew A, Bell A, Johnstone RM (1995) Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. Biochem J 308(Pt 3):823–830

    CAS  PubMed  Google Scholar 

  • Menon R, Gerber S, Fortunato SJ, Witkin SS (2001) Lipopolysaccharide stimulation of 70 kilo Dalton heat shock protein messenger ribonucleic acid production in cultured human fetal membranes. J Perinat Med 29:133–136

    CAS  PubMed  Google Scholar 

  • Millar DG, Garza KM, Odermatt B, Elford AR, Ono N, Li Z, Ohashi PS (2003) Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 9:1469–1476

    CAS  PubMed  Google Scholar 

  • Molvarec A, Prohaszka Z, Nagy B, Szalay J, Fust G, Karadi I, Rigo J Jr (2006) Association of elevated serum heat-shock protein 70 concentration with transient hypertension of pregnancy, preeclampsia and superimposed preeclampsia: a case-control study. J Hum Hypertens 20:780–786

    CAS  PubMed  Google Scholar 

  • Molvarec A, Rigo J Jr, Nagy B, Walentin S, Szalay J, Fust G, Karadi I, Prohaszka Z (2007a) Serum heat shock protein 70 levels are decreased in normal human pregnancy. J Reprod Immunol 74:163–169

    CAS  PubMed  Google Scholar 

  • Molvarec A, Prohaszka Z, Nagy B, Kalabay L, Szalay J, Fust G, Karadi I, Rigo J Jr (2007b) Association of increased serum heat shock protein 70 and C-reactive protein concentrations and decreased serum alpha(2)-HS glycoprotein concentration with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. J Reprod Immunol 73:172–179

    CAS  PubMed  Google Scholar 

  • Molvarec A, Derzsy Z, Kocsis J et al (2009a) Circulating anti-heat-shock-protein antibodies in normal pregnancy and preeclampsia. Cell Stress Chaperones 14:491–498

    CAS  PubMed  Google Scholar 

  • Molvarec A, Rigo J Jr, Lazar L, Balogh K, Mako V, Cervenak L, Mezes M, Prohaszka Z (2009b) Increased serum heat-shock protein 70 levels reflect systemic inflammation, oxidative stress and hepatocellular injury in preeclampsia. Cell Stress Chaperones 14:151–159

    CAS  PubMed  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159

    CAS  PubMed  Google Scholar 

  • Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    CAS  PubMed  Google Scholar 

  • Njemini R, Lambert M, Demanet C, Mets T (2003) Elevated serum heat-shock protein 70 levels in patients with acute infection: use of an optimized enzyme-linked immunosorbent assay. Scand J Immunol 58:664–669

    CAS  PubMed  Google Scholar 

  • Paternoster DM, Stella A, Simioni P, Mussap M, Plebani M (1995) Coagulation and plasma fibronectin parameters in HELLP syndrome. Int J Gynaecol Obstet 50:263–268

    CAS  PubMed  Google Scholar 

  • Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52:611–617 discussion 617

    PubMed  Google Scholar 

  • Pockley AG (2001) Heat shock proteins, anti-heat shock protein reactivity and allograft rejection. Transplantation 71:1503–1507

    CAS  PubMed  Google Scholar 

  • Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476

    CAS  PubMed  Google Scholar 

  • Pockley AG, Muthana M (2005) Heat shock proteins and allograft rejection. Contrib Nephrol 148:122–134

    CAS  PubMed  Google Scholar 

  • Pockley AG, Shepherd J, Corton JM (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27:367–377

    CAS  PubMed  Google Scholar 

  • Pockley AG, Bulmer J, Hanks BM, Wright BH (1999) Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 4:29–35

    CAS  PubMed  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    CAS  PubMed  Google Scholar 

  • Pockley AG, Calderwood SK, Multhoff G (2009) The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions? Cell Stress Chaperones (in press)

  • Prohaszka Z, Fust G (2004) Immunological aspects of heat-shock proteins-the optimum stress of life. Mol Immunol 41:29–44

    CAS  PubMed  Google Scholar 

  • Prohaszka Z, Singh M, Nagy K, Kiss E, Lakos G, Duba J, Fust G (2002) Heat shock protein 70 is a potent activator of the human complement system. Cell Stress Chaperones 7:17–22

    CAS  PubMed  Google Scholar 

  • Rao DV, Watson K, Jones GL (1999) Age-related attenuation in the expression of the major heat shock proteins in human peripheral lymphocytes. Mech Ageing Dev 107:105–118

    CAS  PubMed  Google Scholar 

  • Rea IM, McNerlan S, Pockley AG (2001) Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontol 36:341–352

    CAS  PubMed  Google Scholar 

  • Redman CW, Sargent IL (2000) Placental debris, oxidative stress and pre-eclampsia. Placenta 21:597–602

    CAS  PubMed  Google Scholar 

  • Redman CW, Sargent IL (2001) The pathogenesis of pre-eclampsia. Gynecol Obstet Fertil 29:518–522

    CAS  PubMed  Google Scholar 

  • Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308:1592–1594

    CAS  PubMed  Google Scholar 

  • Redman CW, Sacks GP, Sargent IL (1999) Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 180:499–506

    CAS  PubMed  Google Scholar 

  • Roberts JM, Gammill HS (2005) Preeclampsia: recent insights. Hypertension 46:1243–1249

    CAS  PubMed  Google Scholar 

  • Sacks G, Sargent I, Redman C (1999) An innate view of human pregnancy. Immunol Today 20:114–118

    CAS  PubMed  Google Scholar 

  • Saito K, Dai Y, Ohtsuka K (2005) Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp Cell Res 310:229–236

    CAS  PubMed  Google Scholar 

  • Sargent IL, Borzychowski AM, Redman CW (2006) NK cells and human pregnancy—an inflammatory view. Trends Immunol 27:399–404

    CAS  PubMed  Google Scholar 

  • Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265:12111–12114

    CAS  PubMed  Google Scholar 

  • Shah M, Stanek J, Handwerger S (1998) Differential localization of heat shock proteins 90, 70, 60 and 27 in human decidua and placenta during pregnancy. Histochem J 30:509–518

    CAS  PubMed  Google Scholar 

  • Sibai BM, Ramadan MK, Usta I, Salama M, Mercer BM, Friedman SA (1993) Maternal morbidity and mortality in 442 pregnancies with hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome). Am J Obstet Gynecol 169:1000–1006

    CAS  PubMed  Google Scholar 

  • Slattery MM, Morrison JJ (2002) Preterm delivery. Lancet 360:1489–1497

    PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21:315–320

    CAS  PubMed  Google Scholar 

  • Sotiriou S, Liatsos K, Ladopoulos I, Arvanitis DL (2004) A comparison in concentration of heat shock proteins (HSP) 70 and 90 on chorionic villi of human placenta in normal pregnancies and in missed miscarriages. Clin Exp Obstet Gynecol 31:185–190

    CAS  PubMed  Google Scholar 

  • Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    CAS  PubMed  Google Scholar 

  • Suzuki K, Peake J, Nosaka K et al (2006) Changes in markers of muscle damage, inflammation and HSP70 after an Ironman triathlon race. Eur J Appl Physiol 98:525–534

    CAS  PubMed  Google Scholar 

  • Szekeres-Bartho J, Barakonyi A, Miko E, Polgar B, Palkovics T (2001) The role of gamma/delta T cells in the feto–maternal relationship. Semin Immunol 13:229–233

    CAS  PubMed  Google Scholar 

  • Tamasi L, Bohacs A, Tamasi V, Stenczer B, Prohaszka Z, Rigo J Jr, Losonczy G, Molvarec A (2009) Increased circulating heat shock protein 70 levels in pregnant asthmatics. Cell Stress Chaperones (in press)

  • Tan H, Xu Y, Xu J et al (2007) Association of increased heat shock protein 70 levels in the lymphocyte with high risk of adverse pregnancy outcomes in early pregnancy: a nested case-control study. Cell Stress Chaperones 12:230–236

    CAS  PubMed  Google Scholar 

  • Tanaka S, Kimura Y, Mitani A et al (1999) Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol 163:5560–5565

    CAS  PubMed  Google Scholar 

  • Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker's guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28

    CAS  PubMed  Google Scholar 

  • Taylor DD, Akyol S, Gercel-Taylor C (2006) Pregnancy-associated exosomes and their modulation of T cell signaling. J Immunol 176:1534–1542

    CAS  PubMed  Google Scholar 

  • Theriault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579:1951–1960

    CAS  PubMed  Google Scholar 

  • Thomas ML, Samant UC, Deshpande RK, Chiplunkar SV (2000) Gammadelta T cells lyse autologous and allogenic oesophageal tumours: involvement of heat-shock proteins in the tumour cell lysis. Cancer Immunol Immunother 48:653–659

    CAS  PubMed  Google Scholar 

  • Tong W, Luo W (2000) Heat shock proteins' mRNA expression in asthma. Respirology 5:227–230

    CAS  PubMed  Google Scholar 

  • Vignola AM, Chanez P, Polla BS, Vic P, Godard P, Bousquet J (1995) Increased expression of heat shock protein 70 on airway cells in asthma and chronic bronchitis. Am J Respir Cell Mol Biol 13:683–691

    CAS  PubMed  Google Scholar 

  • Vogel I, Thorsen P, Curry A, Sandager P, Uldbjerg N (2005) Biomarkers for the prediction of preterm delivery. Acta Obstet Gynecol Scand 84:516–525

    PubMed  Google Scholar 

  • Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393

    CAS  PubMed  Google Scholar 

  • Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T (2002) Stimulation of Th1-polarizing cytokines, C–C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429

    CAS  PubMed  Google Scholar 

  • Wataba K, Saito T, Takeuchi M, Nakayama M, Suehara N, Kudo R (2004) Changed expression of heat shock proteins in various pathological findings in placentas with intrauterine fetal growth restriction. Med Electron Microsc 37:170–176

    CAS  PubMed  Google Scholar 

  • Wegmann TG, Lin H, Guilbert L, Mosmann TR (1993) Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14:353–356

    CAS  PubMed  Google Scholar 

  • Wei Y, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A (1996) Induction of autologous tumor killing by heat treatment of fresh human tumor cells: involvement of gamma delta T cells and heat shock protein 70. Cancer Res 56:1104–1110

    CAS  PubMed  Google Scholar 

  • Weinstein L (1982) Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. Am J Obstet Gynecol 142:159–167

    CAS  PubMed  Google Scholar 

  • Weiss YG, Maloyan A, Tazelaar J, Raj N, Deutschman CS (2002) Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J Clin Invest 110:801–806

    CAS  PubMed  Google Scholar 

  • Wendling U, Paul L, van der Zee R, Prakken B, Singh M, van Eden W (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164:2711–2717

    CAS  PubMed  Google Scholar 

  • Wu WX, Derks JB, Zhang Q, Nathanielsz PW (1996) Changes in heat shock protein-90 and -70 messenger ribonucleic acid in uterine tissues of the ewe in relation to parturition and regulation by estradiol and progesterone. Endocrinology 137:5685–5693

    CAS  PubMed  Google Scholar 

  • Xu Q, Li DG, Holbrook NJ, Udelsman R (1995) Acute hypertension induces heat-shock protein 70 gene expression in rat aorta. Circulation 92:1223–1229

    CAS  PubMed  Google Scholar 

  • Yeast JD, Lu G (2007) Biochemical markers for the prediction of preterm delivery. Clin Perinatol 34:573–586 vi

    PubMed  Google Scholar 

  • Yokota S, Minota S, Fujii N (2006) Anti-HSP auto-antibodies enhance HSP-induced pro-inflammatory cytokine production in human monocytic cells via Toll-like receptors. Int Immunol 18:573–580

    CAS  PubMed  Google Scholar 

  • Ziegert M, Witkin SS, Sziller I, Alexander H, Brylla E, Hartig W (1999) Heat shock proteins and heat shock protein-antibody complexes in placental tissues. Infect Dis Obstet Gynecol 7:180–185

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Molvarec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molvarec, A., Tamási, L., Losonczy, G. et al. Circulating heat shock protein 70 (HSPA1A) in normal and pathological pregnancies. Cell Stress and Chaperones 15, 237–247 (2010). https://doi.org/10.1007/s12192-009-0146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0146-5

Keywords

Navigation