Skip to main content
Log in

LPS-induced cytokine levels are repressed by elevated expression of HSP70 in rats: possible role of NF-κB

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat shock protein (HSP)70 provides a spectrum of protection against any of a variety of stresses, preventing damage measured at the level of molecules, cells, as well as whole organism. We have previously reported that lipopolysaccharide (LPS)-induced lethality in rats is prevented by a previous exposure to a mild thermal stress and that a thermal stress sufficient to induce HSP70 expression in the liver is accompanied by an inhibition of endotoxin-mediated cytokines and modulation of febrile response. However, the effect of HSP70 upregulation on cytokine expression in animals is unknown. The aim of the present study was to demonstrate the effect of HSP70 overexpression with adenovirus administration on LPS-induced increase in cytokines levels in animals. In the present study, Sprague–Dawley rats were infected with either the control AdTrack or Ad70 virus that directs the expression of human HSP70. After a 5-day incubation, animals were injected with either saline alone or LPS (50 μg/kg). Four hours later, blood samples were drawn and plasma levels of interleukin (IL)-6 or tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assay. Our data demonstrate for the first time that HSP70 overexpression with adenovirus injection prevented the LPS-induced increase in TNF-α and IL-6 levels in rats. Repression of LPS-induced cytokines expressions by HSP70 upregulation was associated with inhibited IκBα degradation and nuclear factor kappa-B (NF-κB) p65 nuclear translocation in liver, suggesting that HSP70 overexpression may regulate LPS-induced cytokines expression through NF-κB pathway. We conclude that the effects of heat stress-induced increase in HSP70 protein expression on LPS-induced cytokine elaboration in whole animals can be reproduced by the actions of a single gene product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6(3):203–208

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Matsumura K et al (1997) Involvement of cyclooxygenase-2 in LPS-induced fever and regulation of its mRNA by LPS in the rat brain. Am J Physiol 272(6 Pt 2):R1712–R1725

    CAS  PubMed  Google Scholar 

  • Chu EK, Ribeiro SP et al (1997) Heat stress increases survival rates in lipopolysaccharide-stimulated rats. Crit Care Med 25(10):1727–1732

    Article  CAS  PubMed  Google Scholar 

  • Conn CA, McClellan JL et al (1995) Cytokines and the acute phase response to influenza virus in mice. Am J Physiol 268(1 Pt 2):R78–R84

    CAS  PubMed  Google Scholar 

  • Craig EA, Weissman JS et al (1994) Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 78(3):365–372

    Article  CAS  PubMed  Google Scholar 

  • Curry HA, Clemens RA et al (1999) Heat shock inhibits radiation-induced activation of NF-kappaB via inhibition of I-kappaB kinase. J Biol Chem 274(33):23061–23067

    Article  CAS  PubMed  Google Scholar 

  • Ding XZ, Fernandez-Prada CM et al (2001) Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16(6):210–219

    Article  CAS  PubMed  Google Scholar 

  • Dokladny K, Kozak A et al (2001) Effect of heat stress on LPS-induced febrile response in D-galactosamine-sensitized rats. Am J Physiol Regul Integr Comp Physiol 280(2):R338–R344

    CAS  PubMed  Google Scholar 

  • Dokladny K, Moseley PL et al (2006a) Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. Am J Physiol Gastrointest Liver Physiol 290(2):G204–G212

    Article  CAS  PubMed  Google Scholar 

  • Dokladny K, Wharton W et al (2006b) Induction of physiological thermotolerance in MDCK monolayers: contribution of heat shock protein 70. Cell Stress Chaperones 11(3):268–275

    Article  CAS  PubMed  Google Scholar 

  • Elander L, Engstrom L et al (2007) IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1. Am J Physiol Regul Integr Comp Physiol 292(1):R258–R267

    CAS  PubMed  Google Scholar 

  • Freudenberg MA, Freudenberg N et al (1982) Time course of cellular distribution of endotoxin in liver, lungs and kidneys of rats. Br J Exp Pathol 63(1):56–65

    CAS  PubMed  Google Scholar 

  • Gabai VL, Mabuchi K et al (2002) Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 22(10):3415–3424

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, May MJ et al (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara S, Iwasaka H et al (2007) Changes in cell culture temperature alter release of inflammatory mediators in murine macrophagic RAW264.7 cells. Inflamm Res 56(7):297–303

    Article  CAS  PubMed  Google Scholar 

  • Hailman E, Lichenstein HS et al (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 179(1):269–277

    Article  CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18(18):2195–2224

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss R, Nunnally I et al (1993) Hyperthermia protects mice against the lethal effects of endotoxin. Am J Physiol 265(6 Pt 2):R1447–R1457

    CAS  PubMed  Google Scholar 

  • Ivanov AI, Romanovsky AA (2004) Prostaglandin E2 as a mediator of fever: synthesis and catabolism. Front Biosci 9:1977–1993

    Article  CAS  PubMed  Google Scholar 

  • Jing L, Wu Q et al (2007) Glutamine induces heat-shock protein and protects against Escherichia coli lipopolysaccharide-induced vascular hyporeactivity in rats. Crit Care 11(2):R34

    Article  PubMed  Google Scholar 

  • Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

    Article  CAS  PubMed  Google Scholar 

  • Kluger MJ, Rudolph K et al (1997) Effect of heat stress on LPS-induced fever and tumor necrosis factor. Am J Physiol 273(3 Pt 2):R858–R863

    CAS  PubMed  Google Scholar 

  • Kozak W, Zheng H et al (1995) Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1 beta-deficient mice. Am J Physiol 269(5 Pt 2):R969–R977

    CAS  PubMed  Google Scholar 

  • Kukreja RC, Kontos MC et al (1994) Oxidant stress increases heat shock protein 70 mRNA in isolated perfused rat heart. Am J Physiol 267(6 Pt 2):H2213–H2219

    CAS  PubMed  Google Scholar 

  • Li S, Ballou LR et al (2001) Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta. Brain Res 910(1–2):163–173

    Article  CAS  PubMed  Google Scholar 

  • Li S, Goorha S et al (2003) Intracerebroventricular interleukin-6, macrophage inflammatory protein-1 beta and IL-18: pyrogenic and PGE(2)-mediated? Brain Res 992(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Li G, Qi XP et al (2006a) Verapamil modulates LPS-induced cytokine production via inhibition of NF-kappa B activation in the liver. Inflamm Res 55(3):108–113

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Perlik V et al (2006b) Kupffer cell-generated PGE2 triggers the febrile response of guinea pigs to intravenously injected LPS. Am J Physiol Regul Integr Comp Physiol 290(5):R1262–R1270

    CAS  PubMed  Google Scholar 

  • Liang P, MacRae TH (1997) Molecular chaperones and the cytoskeleton. J Cell Sci 110(Pt 13):1431–1440

    CAS  PubMed  Google Scholar 

  • Lu D, Maulik N et al (1993) Molecular adaptation of vascular endothelial cells to oxidative stress. Am J Physiol 264(3 Pt 1):C715–C722

    CAS  PubMed  Google Scholar 

  • Mailhos C, Howard MK et al (1993) Heat shock protects neuronal cells from programmed cell death by apoptosis. Neuroscience 55(3):621–627

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Matsumoto K et al (1973) On the in vivo clearance and detoxification of endotoxin by lung and liver. Ann Surg 177(2):159–163

    Article  CAS  PubMed  Google Scholar 

  • Moseley PL (1994) Mechanisms of heat adaptation: thermotolerance and acclimatization. J Lab Clin Med 123(1):48–52

    CAS  PubMed  Google Scholar 

  • Moseley PL, Gapen C et al (1994) Thermal stress induces epithelial permeability. Am J Physiol 267(2 Pt 1):C425–C434

    CAS  PubMed  Google Scholar 

  • Mosser DD, Martin LH (1992) Induced thermotolerance to apoptosis in a human T lymphocyte cell line. J Cell Physiol 151(3):561–570

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Gong P et al (1999) Differential metal response and regulation of human heavy metal-inducible genes. J Cell Physiol 180(1):105–113

    Article  CAS  PubMed  Google Scholar 

  • Musch MW, Ciancio MJ et al (1996) Induction of heat shock protein 70 protects intestinal epithelial IEC-18 cells from oxidant and thermal injury. Am J Physiol 270(2 Pt 1):C429–C436

    CAS  PubMed  Google Scholar 

  • Musch MW, Sugi K et al (1999) Heat-shock protein 72 protects against oxidant-induced injury of barrier function of human colonic epithelial Caco2/bbe cells. Gastroenterology 117(1):115–122

    Article  CAS  PubMed  Google Scholar 

  • Muzio M, Natoli G et al (1998) The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med 187(12):2097–2101

    Article  CAS  PubMed  Google Scholar 

  • Romanovsky AA, Steiner AA et al (2006) Cells that trigger fever. Cell Cycle 5(19):2195–2197

    CAS  PubMed  Google Scholar 

  • Ryan AJ, Flanagan SW et al (1992) Acute heat stress protects rats against endotoxin shock. J Appl Physiol 73(4):1517–1522

    CAS  PubMed  Google Scholar 

  • Sarge KD, Murphy SP et al (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13(3):1392–1407

    CAS  PubMed  Google Scholar 

  • Schumann RR, Leong SR et al (1990) Structure and function of lipopolysaccharide binding protein. Science 249(4975):1429–1431

    Article  CAS  PubMed  Google Scholar 

  • Senftleben U, Karin M (2002) The IKK/NF-kappaB pathway. Crit Care Med 30(1 Supp):S18–S26

    Article  CAS  Google Scholar 

  • Shanley TP, Ryan MA et al (2000) Heat shock inhibits phosphorylation of I-kappaBalpha. Shock 14(4):447–450

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Tu Z et al (2006) The inhibition of LPS-induced production of inflammatory cytokines by HSP70 involves inactivation of the NF-kappaB pathway but not the MAPK pathways. Shock 26(3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Snyder YM, Guthrie L et al (1992) Transcriptional inhibition of endotoxin-induced monokine synthesis following heat shock in murine peritoneal macrophages. J Leukoc Biol 51(2):181–187

    CAS  PubMed  Google Scholar 

  • Steiner AA, Chakravarty S et al (2006a) Bacterial lipopolysaccharide fever is initiated via Toll-like receptor 4 on hematopoietic cells. Blood 107(10):4000–4002

    Article  CAS  PubMed  Google Scholar 

  • Steiner AA, Ivanov AI et al (2006b) Cellular and molecular bases of the initiation of fever. PLoS Biol 4(9):e284

    Article  PubMed  Google Scholar 

  • Sun D, Chen D et al (2005) Heat shock response inhibits NF-kappaB activation and cytokine production in murine Kupffer cells. J Surg Res 129(1):114–121

    Article  CAS  PubMed  Google Scholar 

  • Tobias PS, Soldau K et al (1995) Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem 270(18):10482–10488

    Article  CAS  PubMed  Google Scholar 

  • Van Molle W, Wielockx B et al (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16(5):685–695

    Article  PubMed  Google Scholar 

  • Wagner M, Hermanns I et al (1999) Induction of stress proteins in human endothelial cells by heavy metal ions and heat shock. Am J Physiol 277(5 Pt 1):L1026–L1033

    CAS  PubMed  Google Scholar 

  • Wischmeyer PE, Riehm J et al (2003) Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition 19(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Wright SD, Ramos RA et al (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249(4975):1431–1433

    Article  CAS  PubMed  Google Scholar 

  • Yoo CG, Lee S et al (2000) Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 164(10):5416–5423

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by National Institutes of Health Grant AR40771 the NIEHS Center Grant P30-ES012072. The authors thank Dr. N. Kanagy for the use of the telemetry equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pope L. Moseley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dokladny, K., Lobb, R., Wharton, W. et al. LPS-induced cytokine levels are repressed by elevated expression of HSP70 in rats: possible role of NF-κB. Cell Stress and Chaperones 15, 153–163 (2010). https://doi.org/10.1007/s12192-009-0129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0129-6

Keywords

Navigation