Skip to main content
Log in

Tissue-specific regulation and expression of heat shock proteins in type 2 diabetic monkeys

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The chaperone protein heat shock protein (HSP) 70 has been shown to protect against obesity-associated insulin resistance. Induction of HSPs is thus considered an exciting therapeutic strategy for diabetes (DM). The aims of this study were to (1) determine HSP levels in plasma, hepatic, and pancreatic tissues of type 2 DM primates and (2) assess the relationship between chaperone proteins of the HSP family and cellular protection. We collected plasma from 24 type 2 DM and 25 normoglycemic control (CTL) cynomolgus macaques. A subset of DM monkeys had liver and pancreas samples available which were compared to a second group of CTL monkeys. We found that DM monkeys had 32% lower HSP70 in circulation which remained significant even after adjustment for the greater age and bodyweight of these monkeys (p < 0.001). The liver demonstrated a similar reductions in both HSP70 and 90 that was related to 50% lower levels of the transcription factor, heat shock factor 1 (HSF1; p = 0.03). Pancreatic tissue had the opposite expression pattern with significantly higher HSF1 (p = 0.004) and accordingly higher HSP70 and 90. Pancreas from DM monkeys had less nitrosative oxidation (p = 0.03) which was unaccounted for by superoxide dismutases and was negatively associated with HSP levels (r = −0.57, p = 0.009). HSF1/HSP deficiency exists in DM liver which may contribute to hepatic insulin resistance and this deficiency was reflected in lower circulating concentrations. Pancreas maintains HSP levels despite hyperglycemia, likely in an attempt to protect vulnerable beta cells from exocrine pancreatic damage and from stress associated with insulin hypersecretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADPN:

adiponectin

BW:

bodyweight

c-pep:

C-peptide

CRP:

C-reactive protein

CTL:

control

DM:

diabetes

DTT:

dithiothreitol

EDTA:

ethylenediaminetetraacetic acid

ER:

endoplasmic reticulum

FBG:

fasting blood glucose

IR:

insulin resistance

HSF1:

heat shock factor 1

HSP:

heat shock protein

IL-6:

interleukin-6

NADPH:

nicotinamide adenine dinucleotide phosphate

ox-LDL:

oxidized ApoB lipoprotein

SOD:

superoxide dismutase

SEM:

standard error of the mean

References

  • American Diabetes Association (2007) Diagnosis and classification of diabetes mellitus. Diabetes Care 30(1):S42–S47

    Article  Google Scholar 

  • Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12

    Article  PubMed  CAS  Google Scholar 

  • Atalay M, Oksala NK, Laaksonen DE et al (2004) Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol 97:605–611

    Article  PubMed  CAS  Google Scholar 

  • Bhagat L, Singh VP, Hietaranta AJ, Agrawal S, Steer ML, Saluja AK (2000) Heat shock protein 70 prevents secretagogue-induced cell injury in the pancreas by preventing intracellular trypsinogen activation. J Clin Invest 106:81–89

    Article  PubMed  CAS  Google Scholar 

  • Bitar MS, Farook T, John B, Francis IM (1999) Heat-shock protein 72/73 and impaired wound healing in diabetic and hypercortisolemic states. Surgery 125:594–601

    PubMed  CAS  Google Scholar 

  • Bonora E, Targher G, Alberiche M et al (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 23:57–63

    Article  PubMed  CAS  Google Scholar 

  • Bruce CR, Carey AL, Hawley JA, Febbraio MA (2003) Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes 52:2338–2345

    Article  PubMed  CAS  Google Scholar 

  • Burkart V, Liu H, Bellmann K et al (2000) Natural resistance of human beta cells toward nitric oxide is mediated by heat shock protein 70. J Biol Chem 275:19521–19528

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Nguyen AK, Henstridge DC et al (2008) HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A 105:1739–1744

    Article  PubMed  CAS  Google Scholar 

  • Decker M, Hofflich H, Elias AN (2008) Thiazolidinediones and the preservation of beta-cell function, cellular proliferation and apoptosis. Diabetes Obes Metab 10(8):617–625

    Article  PubMed  CAS  Google Scholar 

  • DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 88:787–835 ix

    Article  PubMed  CAS  Google Scholar 

  • Eizirik DL, Pipeleers DG, Ling Z, Welsh N, Hellerstrom C, Andersson A (1994) Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. Proc Natl Acad Sci U S A 91:9253–9256

    Article  PubMed  CAS  Google Scholar 

  • Febbraio MA, Mesa JL, Chung J et al (2004) Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans. Cell Stress Chaperones 9:390–396

    Article  PubMed  CAS  Google Scholar 

  • Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ (1996) Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem 271:17724–17732

    Article  PubMed  CAS  Google Scholar 

  • Gutsmann-Conrad A, Pahlavani MA, Heydari AR, Richardson A (1999) Expression of heat shock protein 70 decreases with age in hepatocytes and splenocytes from female rats. Mech Ageing Dev 107:255–270

    Article  PubMed  CAS  Google Scholar 

  • Hooper PL (2007) Insulin signaling, GSK-3, heat shock proteins and the natural history of type 2 diabetes mellitus: a hypothesis. Metab Syndr Relat Disord 5:220–230

    Article  PubMed  CAS  Google Scholar 

  • Horowitz M, Robinson SD (2007) Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions. Prog Brain Res 162:433–446

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil GS (2005) Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54(Suppl 2):S73–S78

    Article  PubMed  CAS  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Wang R, Xiao C et al (2004) Serum and lymphocyte levels of heat shock protein 70 in aging: a study in the normal Chinese population. Cell Stress Chaperones 9:69–75

    PubMed  CAS  Google Scholar 

  • Kurucz I, Morva A, Vaag A, Eriksson KF, Huang X, Groop L, Koranyi L (2002) Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51:1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Laybutt DR, Kaneto H, Hasenkamp W et al (2002) Increased expression of antioxidant and antiapoptotic genes in islets that may contribute to beta-cell survival during chronic hyperglycemia. Diabetes 51:413–423

    Article  PubMed  CAS  Google Scholar 

  • Laybutt DR, Glandt M, Xu G, Ahn YB, Trivedi N, Bonner-Weir S, Weir GC (2003) Critical reduction in beta-cell mass results in two distinct outcomes over time. Adaptation with impaired glucose tolerance or decompensated diabetes. J Biol Chem 278:2997–3005

    Article  PubMed  CAS  Google Scholar 

  • Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763

    Article  PubMed  CAS  Google Scholar 

  • Linton S, Davies MJ, Dean RT (2001) Protein oxidation and ageing. Exp Gerontol 36:1503–1518

    Article  PubMed  CAS  Google Scholar 

  • Lubec B, Hermon M, Hoeger H, Lubec G (1998) Aromatic hydroxylation in animal models of diabetes mellitus. FASEB J 12:1581–1587

    PubMed  CAS  Google Scholar 

  • Marini M, Lapalombella R, Canaider S et al (2004) Heat shock response by EBV-immortalized B-lymphocytes from centenarians and control subjects: a model to study the relevance of stress response in longevity. Exp Gerontol 39:83–90

    Article  PubMed  CAS  Google Scholar 

  • McCarty MF (2006) Induction of heat shock proteins may combat insulin resistance. Med Hypotheses 66:527–534

    Article  PubMed  CAS  Google Scholar 

  • McMurtry AL, Cho K, Young LJ, Nelson CF, Greenhalgh DG (1999) Expression of HSP70 in healing wounds of diabetic and nondiabetic mice. J Surg Res 86:36–41

    Article  PubMed  CAS  Google Scholar 

  • Najemnikova E, Rodgers CD, Locke M (2007) Altered heat stress response following streptozotocin-induced diabetes. Cell Stress Chaperones 12:342–352

    Article  PubMed  CAS  Google Scholar 

  • Ohkuwa T, Sato Y, Naoi M (1995) Hydroxyl radical formation in diabetic rats induced by streptozotocin. Life Sci 56:1789–1798

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Hasebe N, Aizawa Y, Izawa K, Kawabe J, Kikuchi K (2004) Thermal treatment attenuates neointimal thickening with enhanced expression of heat-shock protein 72 and suppression of oxidative stress. Circulation 109:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Ooie T, Kajimoto M, Takahashi N et al (2005) Effects of insulin resistance on geranylgeranylacetone-induced expression of heat shock protein 72 and cardioprotection in high-fat diet rats. Life Sci 77:869–881

    Article  PubMed  CAS  Google Scholar 

  • Ozcan U, Yilmaz E, Ozcan L et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140

    Article  PubMed  Google Scholar 

  • Park J, Liu AY (2001) JNK phosphorylates the HSF1 transcriptional activation domain: role of JNK in the regulation of the heat shock response. J Cell Biochem 82:326–338

    Article  PubMed  CAS  Google Scholar 

  • Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:8466–8471

    Article  PubMed  CAS  Google Scholar 

  • Plum A, Agerso H, Andersen L (2000) Pharmacokinetics of the rapid-acting insulin analog, insulin aspart, in rats, dogs, and pigs, and pharmacodynamics of insulin aspart in pigs. Drug Metab Dispos 28:155–160

    PubMed  CAS  Google Scholar 

  • Rea IM, McNerlan S, Pockley AG (2001) Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontol 36:341–352

    Article  PubMed  CAS  Google Scholar 

  • Ritzel RA, Butler AE, Rizza RA, Veldhuis JD, Butler PC (2006) Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care 29:717–718

    Article  PubMed  Google Scholar 

  • Scheuner D, Vander Mierde D, Song B et al (2005) Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med 11:757–764

    Article  PubMed  CAS  Google Scholar 

  • Swiecki C, Stojadinovic A, Anderson J, Zhao A, Dawson H, Shea-Donohue T (2003) Effect of hyperglycemia and nitric oxide synthase inhibition on heat tolerance and induction of heat shock protein 72 kDa in vivo. Am Surg 69:587–592

    PubMed  Google Scholar 

  • Turko IV, Murad F (2002) Protein nitration in cardiovascular diseases. Pharmacol Rev 54:619–634

    Article  PubMed  CAS  Google Scholar 

  • Verbeke P, Clark BF, Rattan SI (2001) Reduced levels of oxidized and glycoxidized proteins in human fibroblasts exposed to repeated mild heat shock during serial passaging in vitro. Free Radic Biol Med 31:1593–1602

    Article  PubMed  CAS  Google Scholar 

  • Wachlin G, Heine L, Kloting I, Dunger A, Hahn HJ, Schmidt S (2002) Stress response of pancreatic islets from diabetes prone BB rats of different age. Autoimmunity 35:389–395

    Article  PubMed  CAS  Google Scholar 

  • Weber SM, Chambers KT, Bensch KG, Scarim AL, Corbett JA (2004) PPARgamma ligands induce ER stress in pancreatic beta-cells: ER stress activation results in attenuation of cytokine signaling. Am J Physiol Endocrinol Metab 287:E1171–E1177

    Article  PubMed  CAS  Google Scholar 

  • Welsh N, Margulis B, Borg LA et al (1995) Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol Med 1:806–820

    PubMed  CAS  Google Scholar 

  • Yamagishi N, Nakayama K, Wakatsuki T, Hatayama T (2001) Characteristic changes of stress protein expression in streptozotocin-induced diabetic rats. Life Sci 69:2603–2609

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by NIH Cardiovascular Pathology Training Grant 5T32HL07115 (KK), Wake Forest University School of Medicine, and Pfizer. The authors gratefully recognize Mr. Mickey Flynn for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kavanagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavanagh, K., Zhang, L. & Wagner, J.D. Tissue-specific regulation and expression of heat shock proteins in type 2 diabetic monkeys. Cell Stress and Chaperones 14, 291–299 (2009). https://doi.org/10.1007/s12192-008-0084-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0084-7

Keywords

Navigation