Skip to main content
Log in

Extreme thermotolerance and behavioral induction of 70-kDa heat shock proteins and their encoding genes in honey bees

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Foraging honey bees frequently leave the hive to gather pollen and nectar for the colony. This period of their lives is marked by periodic extremes of body temperature, metabolic expenditure, and flight muscle activity. Following ecologically relevant episodes of hyperthermia between 33°C and 50°C, heat shock protein 70 (Hsp70) expression and hsp70/hsc70-4 activity in brains of nonflying laboratory-held bees increased by only two to three times baseline at temperatures 46–50°C. Induction was undetectable in thoracic–flight muscles. Yet, thorax hsp70 mRNA (but not hsc70-4 mRNA) levels were up to ten times higher in flight-capable hive bees and foraging bees compared to 1-day-old, flight-incapable bees, while brain hsp70/hsc70-4 mRNA levels were low and varied little among behavioral groups. These data suggest honey bee tissues, especially flight muscles, are extremely thermotolerant. Furthermore, Hsp70 expression in the thoraces of flight-capable bees is probably flight-induced by oxidative and mechanical damage to flight muscle proteins rather than temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alamillo J, Almoguera C, Bartels D, Jordano J (1995) Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Molec Biol 29:1093–1099 doi:10.1007/BF00014981

    Article  CAS  Google Scholar 

  • Ben Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of gene action across different time scales on behavior. Science 296:741–744 doi:10.1126/science.1069911

    Article  PubMed  CAS  Google Scholar 

  • Ben Shahar Y, Leung HT, Pak WL, Sokolowski MB, Robinson GE (2003) cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. J Exp Biol 206:2507–2515 doi:10.1242/jeb.00442

    Article  PubMed  CAS  Google Scholar 

  • Bronk P, Wenniger JJ, Dawson-Scully K, Guo X, Hong S, Atwood HL, Zinsmaier KE (2001) Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo. Neuron 30:475–488 doi:10.1016/S0896-6273(01)00292-6

    Article  PubMed  CAS  Google Scholar 

  • Buckley BA, Hofmann GE (2004) Magnitude and duration of thermal stress determine kinetics of hsp gene regulation in the goby Gillichthys mirabilis. Physiol Biochem Zool 77:570–581 doi:10.1086/420944

    Article  PubMed  CAS  Google Scholar 

  • Burke JJ, Hatfield JL, Klein RP, Mullet JE (1985) Accumulation of heat shock proteins in field-grown cotton. Plant Physiol 78:394–398

    Article  PubMed  CAS  Google Scholar 

  • Chacon-Almeida VML, Simões ZLP, Bitondi MMG (2000) Induction of heat shock proteins in the larval fat body of Apis mellifera L. bees. Apidologie 31:487–501 doi:10.1051/apido:2000141

    Article  CAS  Google Scholar 

  • Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156 doi:10.1186/1471-2164-7-156

    Article  PubMed  CAS  Google Scholar 

  • Colombo SJ, Timmer VR, Colclough ML, Blumwald E (1995) Diurnal variation in heat tolerance and heat shock protein expression in black spruce (Picea mariana). Can J Forest Res 25:369–375 doi:10.1139/x95-041

    Article  CAS  Google Scholar 

  • Daborn P, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel D, Batterham P, Feyereisen R, Wilson TG, French-Constant RH (2002) A single p450 allele associated with insecticide resistance in Drosophila. Science 297:2253–2256 doi:10.1126/science.1074170

    Article  PubMed  CAS  Google Scholar 

  • Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122 doi:10.1146/annurev.ento.47.091201.145137

    Article  PubMed  CAS  Google Scholar 

  • Elekonich MM, Roberts SP (2005) Genetic and physiological underpinnings of age-related and environmentally-mediated phenotypic plasticity in honey bees. Comp Biochem Physiol A 141:362–371 doi:10.1016/j.cbpb.2005.04.014

    Article  CAS  Google Scholar 

  • Feder ME (1997) Necrotic fruit: a novel model system for thermal ecologists. J Therm Biol 22:1–9 doi:10.1016/S0306-4565(96)00028-9

    Article  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61:243–282 doi:10.1146/annurev.physiol.61.1.243

    Article  CAS  Google Scholar 

  • Feder ME, Blair N, Figueras H (1997) Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae. Funct Ecol 11:90–100 doi:10.1046/j.1365-2435.1997.00060.x

    Article  Google Scholar 

  • Feder ME, Roberts SP, Bordelon AC (2000) Molecular thermal telemetry of free-ranging adult Drosophila melanogaster. Oecologia 123:460–465 doi:10.1007/s004420000334

    Article  Google Scholar 

  • Gehring WJ, Wehner R (1995) Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. PNAS 92:2994–2998 doi:10.1073/pnas.92.7.2994

    Article  PubMed  CAS  Google Scholar 

  • Gregorc A, Bowen ID (1999) In situ localization of heat-shock and histone proteins in honey bee (Apis mellifera L.) larvae infected with Paenibacillus larvae. Cell Biol Int 23:211–218 doi:10.1006/cbir.1999.0344

    Article  PubMed  CAS  Google Scholar 

  • Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hdalp. PNAS 96:4468–4473 doi:10.1073/pnas.96.9.4868

    Article  Google Scholar 

  • Hamilton EW, Heckathorn SA, Downs CA, Schwarz TE, Coleman JS, Hallberg RL (1996) Heat shock proteins are produced by field grown naturally occurring plants in the summer in the temperate northeast. US Bull Ecol Soc Am 77(Suppl Part 2):180

    Google Scholar 

  • Harrison JM, Fewell JH, Roberts SP, Hall HG (1996) Achievement of thermal stability by varying metabolic heat production in flying honeybees. Science 274:88–90 doi:10.1126/science.274.5284.88

    Article  PubMed  CAS  Google Scholar 

  • Heinrich B (1980) Mechanisms of body temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. J Exp Biol 85:73–87

    Google Scholar 

  • Helmuth BST, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol Bull 201:374–384 doi:10.2307/1543615

    Article  PubMed  CAS  Google Scholar 

  • Hendershot KL, Weng J, Nguyen HT (1992) Induction temperature of heat shock protein synthesis in wheat. Crop Sci 32:256–261

    CAS  Google Scholar 

  • Hernandez LD, Vierling E (1993) Expression of low molecular weight heat shock proteins under field conditions. Plant Physiol 101:1209–1216

    PubMed  CAS  Google Scholar 

  • Hofmann GE, Somero GN (1996) Protein ubiquitination and stress protein synthesis in Mytilus trossulus occurs during recovery from tidal emersion. Mol Mar Biol Biotechnol 5:175–184

    CAS  Google Scholar 

  • Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honey bee Apis mellifera. Nature 433:931–949

    Google Scholar 

  • Huey RB, Bennett AF (1990) Physiological adjustments to fluctuating thermal environments: an ecological and evolutionary perspective. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Lab Press, Cold Spring Harbor, pp 37–59

    Google Scholar 

  • Joplin KH, Denlinger DL (1990) Developmental and tissue specific control of the heat shock induced 70 kDa related proteins in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 36:239–249 doi:10.1016/0022-1910(90)90108-R

    Article  CAS  Google Scholar 

  • Kimpel JA, Key JL (1985) Presence of heat shock mRNAs in field grown soybeans. Plant Physiol 79:672–678

    Article  PubMed  CAS  Google Scholar 

  • Krebs RA, Feder ME (1997) Tissue-specific variation in Hsp70 expression and thermal damage in Drosophila melanogaster larvae. J Exp Biol 200:2007–2015

    PubMed  CAS  Google Scholar 

  • Neukirch A (1982) Dependence of the life-span of the honeybee (Apis mellifera) upon flight performance and energy consumption. J Comp Phys B 146:35–40

    Article  CAS  Google Scholar 

  • Nguyen HT, Joshi CP, Klueva N, Weng J, Hendershot KL, Blum A (1994) The heat-shock response and expression of heat-shock proteins in wheat under diurnal heat stress and field conditions. Aust J Plant Physiol 21:857–67

    Article  CAS  Google Scholar 

  • Palter KB, Watanabe M, Stinson L, Mahowald AP, Craig EA (1986) Expression and localization of Drosophila melanogaster hsp70 cognate proteins. Mol Cell Biol 6:1187–1203

    PubMed  CAS  Google Scholar 

  • Roberts SP, Harrison JF (1999) Mechanisms of thermal stability during flight in the honeybee Apis mellifera. J Exp Biol 202:1523–1533

    PubMed  Google Scholar 

  • Roberts SP, Elekonich MM (2005) Commentary: behavioral development and the ontogeny of flight capacity in honey bees. J Exp Biol 208:4193–4198 doi:10.1242/jeb.01862

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Elekonich MM, Robinson GE (2003) Biogenic amines in the antennal lobes and the initiation and maintenance of foraging behavior in honey bees. J Neurobiol 54:406–416 doi:10.1002/neu.10138

    Article  PubMed  CAS  Google Scholar 

  • Severson DW, Erickson EH Jr, Williamson JL, Aiken JM (1990) Heat stress induced enhancement of heat shock protein gene activity in the honey bee (Apis mellifera). Experientia 46:737–739 doi:10.1007/BF01939951

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Lakhotia SC (2000) Tissue-specific variations in the induction of Hsp70 and Hs64 by heat shock in insects. Cell Stress Chaperones 5:90–97 doi:10.1379/1466-1268(2000)005<0090:TSVITI>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnology 75:291–295 doi:10.1016/S0168-1656(99)00163-7

    Article  CAS  Google Scholar 

  • Tomanek L, Somero GN (1997) The effect of temperature on protein synthesis in snails of the genus Tegula from the sub-and intertidal zone. Am Zool 37:188A

    Google Scholar 

  • Velazquez JM, Sonoda S, Bugaisky G, Lindquist S (1983) Is the major Drosophila heat shock protein present in cells that have not been heat shocked? J Cell Biol 96:286–290 doi:10.1083/jcb.96.1.286

    Article  PubMed  CAS  Google Scholar 

  • Whitfield CW, Cziko AM, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299 doi:10.1126/science.1086807

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson L, Blank G, Gruber C (1996) Desktop data analysis with systat. Upper Saddle River, N.J.: Prentice Hall

  • Williams JB, Roberts SP, Elekonich MM (2008) Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp Gerontol 43:538–549 doi:10.1016/j.exger.2008.02.001

    Article  PubMed  CAS  Google Scholar 

  • Winston ML (1987) The biology of the honeybee. Harvard University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

Thanks to Gene Robinson, Yehuda Ben Shahar, Miguel Corona, Jayson Cutler, Christina Grozinger, Kathy Jez, Rodney Mehring, Karen Pruiett, David Schulz, Kate Shen, April Stetler, and Stephen Roberts for comments and/or assistance. This research was supported by a UNLV New Investigator Award and National Science Foundation grant (IOB-0517635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle M. Elekonich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elekonich, M.M. Extreme thermotolerance and behavioral induction of 70-kDa heat shock proteins and their encoding genes in honey bees. Cell Stress and Chaperones 14, 219–226 (2009). https://doi.org/10.1007/s12192-008-0063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0063-z

Keywords

Navigation