Skip to main content
Log in

In vivo molecular imaging of vascular stress

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Noninvasive in vivo imaging is an emerging specialty in experimental radiology aiming at developing hardware and appropriate contrast agents to visualize the molecular basis and pathophysiological processes of many pathological conditions, including atherosclerosis. The list of potentially useful tracers and targets for in vivo molecular imaging in the cascade of early atherosclerotic events has been narrowed down to some very promising endothelial factors, i.e., cell adhesion molecules, macrophages, apoptosis, lipoproteins, heat shock proteins, and others. In this review, we will update on the progress of recent developments in the field of noninvasive molecular imaging in experimental atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

ARMY:

Atherosclerosis risk factors in male youngsters

CD:

Cluster of differentiation

CEST:

Chemical exchange saturation transfer

CT:

Computed tomography

CVD:

Cardiovascular disease

ELAM:

Endothelial lymphocyte adhesion molecule

18FDG:

18Fluorodeoxyglucose

Gd:

Gadolinium

GLUT-1:

Glucose transporter-1

HDL:

High-density lipoprotein

HSP:

Heat shock protein

ICAM:

Intracellular adhesion molecule

LDL:

Low-density lipoprotein

LPS:

Lipopolysaccharide

Mab:

Monoclonal antibody

MHC:

Major histocompatibility complex

MPO:

Myeloperoxydase

MMP:

Matrixmetalloproteinase

MRI:

Magnetic resonance imaging

OxLDL:

Oxidized low-density lipoprotein

PARACEST:

Paramagnetic chemical exchange saturation transfer

PET:

Positron emission tomography

RGD:

Arginine-glycine-aspartic acid

SMC:

Smooth muscle cell

SPECT:

Single photon emission tomography

SPIO:

Superparamagnetic iron oxide

SRA:

Scavenger receptor A

Tc:

Technetium

TCR:

T-cell receptor

TLR:

Toll-like receptor

TNP:

Trireporter nanoparticles

US:

Ultrasound

USPIO:

Ultrasmall superparamagnetic iron oxide

VCAM:

Vascular cell adhesion molecule

References

  • Aime S, Cabella C, Colombatto S, Geninatti Crich S, Gianolio E, Maggioni F (2002a) Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 16:394–406

    PubMed  Google Scholar 

  • Aime S, Dastru W, Crich SG, Gianolio E, Mainero V (2002b) Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd(III) complexes. Biopolymers 66:419–428

    PubMed  CAS  Google Scholar 

  • Aime S, Frullano L, Geninatti Crich S (2002c) Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chem Int Ed Engl 41:1017–1019

    PubMed  CAS  Google Scholar 

  • Aime S, Carrera C, Delli Castelli D, Geninatti Crich S, Terreno E (2005) Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl 44:1813–1815

    PubMed  CAS  Google Scholar 

  • Akerblom HK, Uhari M, Pesonen E et al (1991) Cardiovascular risk in young Finns. Ann Med 23:35–39

    PubMed  CAS  Google Scholar 

  • Allen M, Bulte JW, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T (2005) Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn Reson Med 54:807–812

    PubMed  CAS  Google Scholar 

  • Amberger A, Maczek C, Jurgens G et al (1997) Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 2:94–103

    PubMed  CAS  Google Scholar 

  • Amirbekian V, Lipinski MJ, Briley-Saebo KC et al (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 104:961–966

    PubMed  CAS  Google Scholar 

  • Armitage FE, Richardson DE, Li KC (1990) Polymeric contrast agents for magnetic resonance imaging: synthesis and characterization of gadolinium diethylenetriaminepentaacetic acid conjugated to polysaccharides. Bioconjug Chem 1:365–374

    PubMed  CAS  Google Scholar 

  • Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    PubMed  CAS  Google Scholar 

  • Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 338:1650–1656

    PubMed  CAS  Google Scholar 

  • Bernhard D, Pfister G, Huck CW, Kind M, Salvenmoser W, Bonn GK, Wick G (2003) Disruption of vascular endothelial homeostasis by tobacco smoke: impact on atherosclerosis. Faseb J 17:2302–2304

    PubMed  CAS  Google Scholar 

  • Bjornerud A, Johansson LO, Briley-Saebo K, Ahlstrom HK (2002) Assessment of T1 and T2* effects in vivo and ex vivo using iron oxide nanoparticles in steady state–dependence on blood volume and water exchange. Magn Reson Med 47:461–471

    PubMed  CAS  Google Scholar 

  • Broisat A, Riou LM, Ardisson V, Boturyn D, Dumy P, Fagret D, Ghezzi C (2007) Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p. Eur J Nucl Med Mol Imaging 34:830–840

    PubMed  CAS  Google Scholar 

  • Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    PubMed  CAS  Google Scholar 

  • Bulut Y, Faure E, Thomas L et al (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168:1435–1440

    PubMed  CAS  Google Scholar 

  • Cederholm A, Frostegard J (2007) Annexin A5 as a novel player in prevention of atherothrombosis in SLE and in the general population. Ann N Y Acad Sci 1108:96–103

    PubMed  CAS  Google Scholar 

  • Choudhury RP, Fuster V, Fayad ZA (2004) Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 3:913–925

    PubMed  CAS  Google Scholar 

  • Cybulsky MI, Gimbrone MA Jr (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791

    PubMed  CAS  Google Scholar 

  • Danesh J, Collins R, Peto R (1997) Chronic infections and coronary heart disease: is there a link? Lancet 350:430–436

    PubMed  CAS  Google Scholar 

  • Davies JR, Rudd JF, Fryer TD, Weissberg PL (2005a) Targeting the vulnerable plaque: the evolving role of nuclear imaging. J Nucl Cardiol 12:234–246

    PubMed  Google Scholar 

  • Davies JR, Rudd JH, Fryer TD et al (2005b) Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 36:2642–2647

    PubMed  Google Scholar 

  • Davies JR, Rudd JH, Weissberg PL, Narula J (2006) Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 47:C57–C68

    PubMed  CAS  Google Scholar 

  • Dobrucki LW, Sinusas AJ (2005) Cardiovascular molecular imaging. Semin Nucl Med 35:73–81

    PubMed  Google Scholar 

  • Faranesh AZ, Nastley MT, Perez de la Cruz C, Haller MF, Laquerriere P, Leong KW, McVeigh ER (2004) In vitro release of vascular endothelial growth factor from gadolinium-doped biodegradable microspheres. Magn Reson Med 51:1265–1271

    PubMed  CAS  Google Scholar 

  • Frias JC, Williams KJ, Fisher EA, Fayad ZA (2004) Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126:16316–16317

    PubMed  CAS  Google Scholar 

  • Frias JC, Ma Y, Williams KJ, Fayad ZA, Fisher EA (2006) Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett 6:2220–2224

    PubMed  CAS  Google Scholar 

  • Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK (1999) Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 145:33–43

    PubMed  CAS  Google Scholar 

  • Gerrity RG (1981) The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions. Am J Pathol 103:191–200

    PubMed  CAS  Google Scholar 

  • Gillies RJ (2002) In vivo molecular imaging. J Cell Biochem Suppl 39:231–238

    PubMed  CAS  Google Scholar 

  • Glass CK, Witztum JL (2001) Atherosclerosis. the road ahead. Cell 104:503–516

    CAS  Google Scholar 

  • Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168:569–576

    PubMed  CAS  Google Scholar 

  • Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    PubMed  CAS  Google Scholar 

  • Haubner R (2006) Alphavbeta3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med Mol Imaging 33(Suppl 1):54–63

    PubMed  Google Scholar 

  • Haubner R, Weber WA, Beer AJ et al (2005) Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2:e70

    PubMed  Google Scholar 

  • Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197

    PubMed  CAS  Google Scholar 

  • Hochleitner BW, Hochleitner EO, Obrist P, Eberl T, Amberger A, Xu Q, Margreiter R, Wick G (2000) Fluid shear stress induces heat shock protein 60 expression in endothelial cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 20:617–623

    PubMed  CAS  Google Scholar 

  • Hua J, Dobrucki LW, Sadeghi MM et al (2005) Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 111:3255–3260

    PubMed  CAS  Google Scholar 

  • Hyafil F, Cornily JC, Feig JE et al (2007) Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13:636–641

    PubMed  CAS  Google Scholar 

  • Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD, Cybulsky MI (1999) Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 85:199–207

    PubMed  CAS  Google Scholar 

  • Jaffer FA, Weissleder R (2004) Seeing within: molecular imaging of the cardiovascular system. Circ Res 94:433–445

    PubMed  CAS  Google Scholar 

  • Jaffer FA, Libby P, Weissleder R (2006a) Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 47:1328–1338

    PubMed  CAS  Google Scholar 

  • Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R (2006b) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92

    PubMed  Google Scholar 

  • Knoflach M, Kiechl S, Kind M et al (2003a) Cardiovascular risk factors and atherosclerosis in young males: ARMY study (Atherosclerosis Risk-Factors in Male Youngsters). Circulation 108:1064–1069

    PubMed  Google Scholar 

  • Knoflach M, Mayrl B, Mayerl C, Sedivy R, Wick G (2003b) Atherosclerosis as a paradigmatic disease of the elderly: role of the immune system. Immunol Allergy Clin North Am 23:117–132

    PubMed  Google Scholar 

  • Knoflach M, Kiechl S, Mayrl B et al (2007) T-cell reactivity against HSP60 relates to early but not advanced atherosclerosis. Atherosclerosis 195:333–338

    PubMed  CAS  Google Scholar 

  • Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103:571–577

    PubMed  CAS  Google Scholar 

  • Kolodgie FD, Petrov A, Virmani R et al (2003) Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108:3134–3139

    PubMed  CAS  Google Scholar 

  • Kooi ME, Cappendijk VC, Cleutjens KB et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    PubMed  CAS  Google Scholar 

  • Lanza GM, Winter PM, Caruthers SD, Morawski AM, Schmieder AH, Crowder KC, Wickline SA (2004) Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 11:733–743

    PubMed  Google Scholar 

  • Lanza G, Winter P, Cyrus T, Caruthers S, Marsh J, Hughes M, Wickline S (2006) Nanomedicine opportunities in cardiology. Ann N Y Acad Sci 1080:451–465

    PubMed  CAS  Google Scholar 

  • Laurberg JM, Olsen AK, Hansen SB, Bottcher M, Morrison M, Ricketts SA, Falk E (2007) Imaging of vulnerable atherosclerotic plaques with FDG-microPET: no FDG accumulation. Atherosclerosis 192:275–282

    PubMed  CAS  Google Scholar 

  • Li W, Hellsten A, Jacobsson LS, Blomqvist HM, Olsson AG, Yuan XM (2004) Alpha-tocopherol and astaxanthin decrease macrophage infiltration, apoptosis and vulnerability in atheroma of hyperlipidaemic rabbits. J Mol Cell Cardiol 37:969–978

    PubMed  CAS  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    PubMed  CAS  Google Scholar 

  • Lindner JR (2004a) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3:527–532

    PubMed  CAS  Google Scholar 

  • Lindner JR (2004b) Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 11:215–221

    PubMed  Google Scholar 

  • Manchester M, Singh P (2006) Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev 58:1505–1522

    PubMed  CAS  Google Scholar 

  • Mayr M, Metzler B, Kiechl S, Willeit J, Schett G, Xu Q, Wick G (1999) Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation 99:1560–1566

    PubMed  CAS  Google Scholar 

  • Mayr M, Kiechl S, Willeit J, Wick G, Xu Q (2000) Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation 102:833–839

    PubMed  CAS  Google Scholar 

  • Meoli DF, Sadeghi MM, Krassilnikova S et al (2004) Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 113:1684–1691

    PubMed  CAS  Google Scholar 

  • Millonig G, Schwentner C, Mueller P, Mayerl C, Wick G (2001) The vascular-associated lymphoid tissue: a new site of local immunity. Curr Opin Lipidol 12:547–553

    PubMed  CAS  Google Scholar 

  • Millonig G, Malcom GT, Wick G (2002) Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY)-study. Atherosclerosis 160:441–448

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    PubMed  CAS  Google Scholar 

  • Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V (2006) Neovascularization in human atherosclerosis. Circulation 113:2245–2252

    PubMed  Google Scholar 

  • Mulder WJ, Strijkers GJ, Habets JW et al (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. Faseb J 19:2008–2010

    PubMed  CAS  Google Scholar 

  • Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164

    PubMed  CAS  Google Scholar 

  • Mulder WJ, Strijkers GJ, Vucic E, Cormode DP, Nicolay K, Fayad ZA (2007) Magnetic resonance molecular imaging contrast agents and their application in atherosclerosis. Top Magn Reson Imaging 18:409–417

    Article  PubMed  Google Scholar 

  • Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511

    PubMed  CAS  Google Scholar 

  • Nahrendorf M, Zhang H, Hembrador S et al (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387

    PubMed  CAS  Google Scholar 

  • Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8:757–760

    PubMed  CAS  Google Scholar 

  • Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122

    PubMed  CAS  Google Scholar 

  • Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342:836–843

    PubMed  CAS  Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    PubMed  CAS  Google Scholar 

  • Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    PubMed  CAS  Google Scholar 

  • Rudd JH, Warburton EA, Fryer TD et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711

    PubMed  CAS  Google Scholar 

  • Rudd JH, Davies JR, Weissberg PL (2005) Imaging of atherosclerosis – can we predict plaque rupture? Trends Cardiovasc Med 15:17–24

    PubMed  Google Scholar 

  • Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422

    PubMed  CAS  Google Scholar 

  • Schellenberger EA, Hogemann D, Josephson L, Weissleder R (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Acad Radiol 9(Suppl 2):S310–S311

    PubMed  Google Scholar 

  • Schellenberger EA, Sosnovik D, Weissleder R, Josephson L (2004) Magneto/optical annexin V, a multimodal protein. Bioconjug Chem 15:1062–1067

    PubMed  CAS  Google Scholar 

  • Schett G, Xu Q, Amberger A, Van der Zee R, Recheis H, Willeit J, Wick G (1995) Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest 96:2569–2577

    PubMed  CAS  Google Scholar 

  • Schwartz CJ, Sprague EA, Kelley JL, Valente AJ, Suenram CA (1985) Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon (Papio cynocephalus). An ultrastructural study: implications in atherogenesis. Virchows Arch A Pathol Anat Histopathol 405:175–191

    PubMed  CAS  Google Scholar 

  • Seitz CS, Kleindienst R, Xu Q, Wick G (1996) Coexpression of heat-shock protein 60 and intercellular-adhesion molecule-1 is related to increased adhesion of monocytes and T cells to aortic endothelium of rats in response to endotoxin. Lab Invest 74:241–252

    PubMed  CAS  Google Scholar 

  • Shiomi M, Ito T, Yamada S, Kawashima S, Fan J (2003) Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit). Arterioscler Thromb Vasc Biol 23:1239–1244

    PubMed  CAS  Google Scholar 

  • Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    PubMed  CAS  Google Scholar 

  • Sirol M, Itskovich VV, Mani V et al (2004) Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109:2890–2896

    PubMed  CAS  Google Scholar 

  • Sirol M, Aguinaldo JG, Graham PB et al (2005a) Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 182:79–85

    PubMed  CAS  Google Scholar 

  • Sirol M, Fuster V, Badimon JJ, Fallon JT, Moreno PR, Toussaint JF, Fayad ZA (2005b) Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation 112:1594–1600

    PubMed  Google Scholar 

  • Smilde TJ, van Wissen S, Wollersheim H, Kastelein JJ, Stalenhoef AF (2001) Genetic and metabolic factors predicting risk of cardiovascular disease in familial hypercholesterolemia. Neth J Med 59:184–195

    PubMed  CAS  Google Scholar 

  • Smith BR, Heverhagen J, Knopp M et al (2007) Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices 9:719–727

    PubMed  Google Scholar 

  • Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    PubMed  CAS  Google Scholar 

  • Soltys BJ, Gupta RS (2000) Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. Int Rev Cytol 194:133–196

    PubMed  CAS  Google Scholar 

  • Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21:315–320

    PubMed  CAS  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    PubMed  CAS  Google Scholar 

  • Strauss HW, Grewal RK, Pandit-Taskar N (2004) Molecular imaging in nuclear cardiology. Semin Nucl Med 34:47–55

    PubMed  Google Scholar 

  • Stuber M, Gilson WD, Schar M et al (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 58:1072–1077

    PubMed  Google Scholar 

  • Tahara N, Kai H, Yamagishi S et al (2007) Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 49:1533–1539

    PubMed  CAS  Google Scholar 

  • Torchilin VP (2002) PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev 54:235–252

    PubMed  CAS  Google Scholar 

  • Tsimikas S (2002) Noninvasive imaging of oxidized low-density lipoprotein in atherosclerotic plaques with tagged oxidation-specific antibodies. Am J Cardiol 90:22L–27L

    PubMed  CAS  Google Scholar 

  • Tsimikas S, Shaw PX (2002) Non-invasive imaging of vulnerable plaques by molecular targeting of oxidized LDL with tagged oxidation-specific antibodies. J Cell Biochem Suppl 39:138–146

    PubMed  Google Scholar 

  • Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87

    PubMed  CAS  Google Scholar 

  • Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 142:619–624

    PubMed  CAS  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  CAS  Google Scholar 

  • Weissleder R, Stark DD, Compton CC, Wittenberg J, Ferrucci JT (1987) Ferrite-enhanced MR imaging of hepatic lymphoma: an experimental study in rats. AJR Am J Roentgenol 149:1161–1165

    PubMed  CAS  Google Scholar 

  • Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403

    PubMed  CAS  Google Scholar 

  • Wickline SA, Lanza GM (2003) Nanotechnology for molecular imaging and targeted therapy. Circulation 107:1092–1095

    PubMed  Google Scholar 

  • Winalski CS, Shortkroff S, Mulkern RV, Schneider E, Rosen GM (2002) Magnetic resonance relaxivity of dendrimer-linked nitroxides. Magn Reson Med 48:965–972

    PubMed  CAS  Google Scholar 

  • Winter PM, Caruthers SD, Yu X et al (2003a) Improved molecular imaging contrast agent for detection of human thrombus. Magn Reson Med 50:411–416

    PubMed  CAS  Google Scholar 

  • Winter PM, Morawski AM, Caruthers SD et al (2003b) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274

    PubMed  CAS  Google Scholar 

  • Winter PM, Shukla HP, Caruthers SD et al (2005) Molecular imaging of human thrombus with computed tomography. Acad Radiol 12(Suppl 1):S9–S13

    PubMed  Google Scholar 

  • Winter PM, Neubauer AM, Caruthers SD et al (2006) Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109

    PubMed  CAS  Google Scholar 

  • Xu Q, Wick G (1996) The role of heat shock proteins in protection and pathophysiology of the arterial wall. Mol Med Today 2:372–379

    PubMed  CAS  Google Scholar 

  • Xu QB, Oberhuber G, Gruschwitz M, Wick G (1990) Immunology of atherosclerosis: cellular composition and major histocompatibility complex class II antigen expression in aortic intima, fatty streaks, and atherosclerotic plaques in young and aged human specimens. Clin Immunol Immunopathol 56:344–359

    PubMed  CAS  Google Scholar 

  • Xu Q, Dietrich H, Steiner HJ, Gown AM, Schoel B, Mikuz G, Kaufmann SH, Wick G (1992) Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 12:789–799

    PubMed  CAS  Google Scholar 

  • Xu Q, Schett G, Seitz CS, Hu Y, Gupta RS, Wick G (1994) Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells. Circ Res 75:1078–1085

    PubMed  CAS  Google Scholar 

  • Xu Q, Schett G, Perschinka H et al (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102:14–20

    PubMed  CAS  Google Scholar 

  • Young RA, Elliott TJ (1989) Stress proteins, infection, and immune surveillance. Cell 59:5–8

    PubMed  CAS  Google Scholar 

  • Yu X, Song SK, Chen J et al (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44:867–872

    PubMed  CAS  Google Scholar 

  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Propter Homines Foundation, Vaduz, FL (to GW); the Medizinische Forschungsförderung Innsbruck MFI (to MCW, Project 9443); the European Union as part of the project Molecular Basis of Vascular Events Leading to Thrombotic Stroke (MOLSTROKE; LSHM-CT-2004–005206), and the Network of Excellence European Vascular Genomics Network (EVGN; LSHM-CT-2003–503254). Editorial assistance from M. Kat Occhipinti-Bender.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius C. Wick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wick, M.C., Kremser, C., Frischauf, S. et al. In vivo molecular imaging of vascular stress. Cell Stress and Chaperones 13, 263–273 (2008). https://doi.org/10.1007/s12192-008-0043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0043-3

Keywords

Navigation