Skip to main content
Log in

Stationary distribution and extinction of a multi-stage HIV model with nonlinear stochastic perturbation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate a stochastic multi-stage model to evaluate the influence of treatment intensification with the integrase inhibitor raltegravir on viral load and 2-LTR dynamics in HIV patients under suppressive therapy. Firstly, it is proven that the model has a unique global positive solution. Secondly, by constructing a Lyapunov function, we establish sufficient conditions for the existence of a unique ergodic stationary distribution if \(R_{0}^{S}>1\). Thirdly, we obtain sufficient criterions \(R_{0}^{s}<1\) for disease extinction. Finally, the analytical results are demonstrated via two simulation examples. Our contribution also concentrates on proposing a method constructing Lyapunov function, which can be successfully used for the research about stationary distribution of epidemic model with nonlinear stochastic perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  2. Culshaw, R.V., Ruan, S., Webb, G.: A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. J. Math. Biol. 46, 425–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nowak, M., Bangham, C.: Population dynamics of immune response to persistent viruses. Science 272, 74–79 (1996)

    Article  Google Scholar 

  4. Chun, T.W., Davey, R.T., Ostrowski, M., et al.: Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat. Med. 6, 757–761 (2000)

    Article  Google Scholar 

  5. Davey, R.T., Bhat, N., Yoder, C., et al.: HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl. Acad. Sci. USA 96, 15109–15114 (1999)

    Article  Google Scholar 

  6. Gandhi, R.T., Coombs, R.W., Chan, E.S., et al.: No effect of raltegravir intensification on viral replication markers in the blood of HIV-1-infected patients receiving antiretroviral therapy. J. AIDS 59, 229–235 (2012)

    Google Scholar 

  7. Besson, G.J., McMahon, D., Maldarelli, F., et al.: Short-course raltegravir intensification does not increase 2 long terminal repeat episomal HIV-1 DNA in patients on effective antiretroviral therapy. Clin. Infect. Dis. 54, 451–453 (2012)

    Article  Google Scholar 

  8. Wang, X., Minkb, G., Linb, D., Song, X., Rong, L.: Influence of raltegravir intensification on viral load and 2-LTR dynamics in HIV patients on suppressive antiretroviral therapy. J. Theor. Biol. 416, 16–27 (2017)

    Article  MATH  Google Scholar 

  9. Lahrouz, A., Omari, L.: Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence. Stat. Probab. Lett. 83, 960–968 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hieu, N.T., Du, N.H., Auger, P., Dang, N.H.: Dynamical behavior of a stochastic SIRS epidemic model. Math. Model. Nat. Phenom. 10, 56–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, Y., Kang, Y., Banerjee, M., Wang, W.: A stochastic epidemic model incorporating media coverage. Commun. Math. Sci. 14, 893–910 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mao, X., Renshaw, E., Marion, G.: Environmental brownian noise suppresses explosions in population dynamics. Stoch. Proc. Appl. 97, 95–110 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dalal, N., Greenhalgh, D., Mao, X.: A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 341, 1084–1101 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Y., Jiang, D., Hayat, T., Alsaedi, A.: Stationary distribution of an HIV model with general nonlinear incidence rate and stochastic perturbations. J. Frankl. Inst. 356, 6610–6637 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Y., Jiang, D., Hayat, T., Ahmad, B.: A stochastic HIV infection model with T-cell proliferation and CTL immune response. Appl. Math. Comput. 31515, 477–493 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Liu, Q., Jiang, D.: Stationary distribution of a stochastic staged progression HIV model with imperfect vaccination. Physica A 5271, Article 121271(2019)

  17. Ji, C.: The threshold for a stochastic HIV-1 infection model with Beddington-DeAngelis incidence rate. Appl. Math. Modelling 64, 168–184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qi, K., Jiang, D.: The impact of virus carriers screening and seeking treatment actively on dynamical behavior of a stochastic HIV/AIDS infection model. Appl. Math. Modelling 85, 378–404 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, T., Qiu, Z., Meng, X., Rong, L.: Analysis of a stochastic HIV-1 infection model with degenerate diffusion. Appl. Math. Comput. 3481, 437–455 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Liu, Q., Jiang, D.: Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation. Appl. Math. Lett. 73, 8–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Q., Jiang, D., Hayat, T., Ahmad, B.: Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation. Appl. Math. Comput. 320, 226–239 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Lv, X., Meng, X., Wang, X.: Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation. Chaos Soliton. Fract. 110, 273–279 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X., Song, G., Xia, Y., Yuan, C.: Dynamical behaviors of the tumor-immune system in a stochastic environment. SIAM J. Appl. Math. 79, 2193–2217 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Song, M., Zuo, W., Jiang, D., Hayat, T.: Stationary distribution and ergodicity of a stochastic cholera model with multiple pathways of transmission. J. Frankl. Inst. 357, 10773–10798 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, C.: Dynamics of a stochastic Markovian switching predator-prey model with infinite memory and general Lévy jumps. Math. Comput. Simulat. 181, 316–332 (2021)

    Article  MATH  Google Scholar 

  26. Zou, X., Li, Q., Lv, J.: Stochastic bifurcations, a necessary and sufficient condition for a stochastic Beddington-DeAngelis predator-prey model. Appl. Math. Lett. (in Press)

  27. Lu, C., Ding, X.: Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations. Appl. Math. Comput. 350, 313–322 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Lu, C., Ding, X.: Dynamical behavior of stochastic delay Lotka-Volterra competitive model with general Lévy jumps. Physica A 531, Article 121730(2019)

  29. Zuo, W., Jiang, D.: Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting. Commun. Nonlinear Sci. Numer. Simulat. 36, 65–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khasminskii, R.: Stochastic stability of differential equations. Sijthoff and noordhoff, alphen aan den rijn, the netherlands (1980)

  31. Liu, M., Deng, M.: Analysis of a stochastic hybrid population model with Allee effect. Appl. Math. Comput. 364, 124582 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, X., Peng, H.: Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching. Appl. Math. Lett. 102, Article 106095 (2020)

  33. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A., Ahmad, B.: Stationary distribution of a stochastic cholera model between communities linked by migration. Appl. Math. Comput. 37315, Article 125021(2020)

  34. Wei, F., Xue, R.: Stability and extinction of SEIR epidemic models with generalized nonlinear incidence. Math. Comput. Simulat. 170, 1–15 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, D., Yuan, S.: Noise-induced bifurcations in the stochastic chemostat model with general nutrient uptake functions. Appl. Math. Lett. 103, Article 106180(2020)

  36. Liu, M., Bai, C.: Optimal harvesting of a stochastic mutualism model with regime-switching. Appl. Math. Comput. 37315, Article 125040(2020)

  37. Li, X., Wang,R., Yin,G.: Moment bounds and ergodicity of switching diffusion systems involving two-time-scale Markov chains. Syst. Control Lett. 132, Article 104514 (2019)

  38. Liu,Q., Jiang,D.: The dynamics of a stochastic vaccinated tuberculosis model with treatment. Physica A 527, Article 121274 (2019)

  39. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mohri, H., Bonhoeffer, S., Monard, S., et al.: Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279, 1223–1227 (1998)

    Article  Google Scholar 

  41. Sedaghat, A.R., Dinoso, J.B., Shen, L., et al.: Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc. Natl. Acad. Sci. USA 105, 4832–4837 (2008)

    Article  Google Scholar 

  42. Wang, X., Song, X., Tang, S., et al.: Dynamics of an HIV model with multiple infection stages and treatment with different drug classes. Bull. Math. Biol. 78, 322–349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rong, L., Perelson, A.S.: Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput. Biol. 5, e1000533 (2009)

    Article  MathSciNet  Google Scholar 

  44. Ramratnam, B., Bonhoeffer, S., Binley, J., et al.: Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354, 1782–1785 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this paper.

Corresponding author

Correspondence to Chun Lu.

Ethics declarations

Funding

This work is supported by grants from the Natural Science Foundation of Shandong Province of China (Nos. ZR2018MA023, ZR2020QA008, ZR2019BA022), the National Natural Science Foundation of China under grants no. 11901329, a Project of Shandong Province Higher Educational Science and Technology Program of China (Nos. J16LI09).

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Sun, G. & Zhang, Y. Stationary distribution and extinction of a multi-stage HIV model with nonlinear stochastic perturbation. J. Appl. Math. Comput. 68, 885–907 (2022). https://doi.org/10.1007/s12190-021-01530-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01530-z

Keywords

Mathematics Subject Classification

Navigation