Skip to main content

Advertisement

Log in

Modeling the cell-to-cell transmission dynamics of viral infection under the exposure of non-cytolytic cure

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

To explore the effect of direct cell-to-cell transmission on viral infection dynamics under the exposure of the non-cytolytic cure mechanism, a mathematical model integrating both the virus-to-cell and cell-to-cell transmissions with a non-cytolytic cure rate of infected cells in the presence of humoral immunity has been considered. Parameter variation experimentation suggests that a high cell-to-cell infection rate induces the chronic infection state in the host, whereas a high non-cytolytic cure rate positively contributes to the reduction of the viral load. We observe that a moderate cure rate under the exposure of a weak cell-to-cell transmission can effectively reduce the level of infection. Further, we examine the effect of cell-free transmission on the infection dynamics under the influence of cell-to-cell transmission. To substantiate our hypothesis, we present a case study of five HIV-1 infected patients to depict the primary HIV-1 infection dynamics in a real life scenario through model prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Arnaout, R.A., Wodarz, D., et al.: HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing? Proc. R. Soc. Lond. B Biol. Sci. 267(1450), 1347–1354 (2000)

    Google Scholar 

  2. Bonhoeffer, S., May, R.M., Shaw, G.M., Nowak, M.A.: Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. 94(13), 6971–6976 (1997)

    Google Scholar 

  3. Chen, S.S., Cheng, C.Y., Takeuchi, Y.: Stability analysis in delayed within-host viral dynamics with both viral and cellular infections. J. Math. Anal. Appl. 442(2), 642–672 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Cifuentes-Muñoz, N., Dutch, R.E., Cattaneo, R.: Direct cell-to-cell transmission of respiratory viruses: the fast lanes. PLoS Pathog. 14(6), e1007015 (2018)

    Google Scholar 

  5. Ciupe, S.M., Ribeiro, R.M., Nelson, P.W., Perelson, A.S.: Modeling the mechanisms of acute hepatitis B virus infection. J. Theor. Biol. 247(1), 23–35 (2007)

    MathSciNet  Google Scholar 

  6. Dahari, H., Lo, A., Ribeiro, R.M., Perelson, A.S.: Modeling hepatitis C virus dynamics: liver regeneration and critical drug efficacy. J. Theor. Biol. 247(2), 371–381 (2007)

    MathSciNet  Google Scholar 

  7. Dahari, H., Major, M., Zhang, X., Mihalik, K., Rice, C.M., Perelson, A.S., Feinstone, S.M., Neumann, A.U.: Mathematical modeling of primary hepatitis C infection: noncytolytic clearance and early blockage of virion production. Gastroenterology 128(4), 1056–1066 (2005)

    Google Scholar 

  8. Dhar, M., Samaddar, S., Bhattacharya, P.: Modeling the effect of non-cytolytic immune response on viral infection dynamics in the presence of humoral immunity. Nonlinear Dyn. 98(1), 637–655 (2019)

    MATH  Google Scholar 

  9. Dhar, M., Samaddar, S., Bhattacharya, P.: Effect of non-cytolytic cure and saturation response: an in silico study to instigate the viral spread inhibition. Eur. Phys. J. Plus 135(6), 407 (2020)

    Google Scholar 

  10. Dhar, M., Samaddar, S., Bhattacharya, P., Upadhyay, R.K.: Viral dynamic model with cellular immune response: a case study of HIV-1 infected humanized mice. Phys. A Stat. Mech. Appl. 524, 1–14 (2019)

    MathSciNet  Google Scholar 

  11. Dubey, B., Dubey, P., Dubey, U.S.: Modeling the intracellular pathogen-immune interaction with cure rate. Commun. Nonlinear Sci. Numer. Simul. 38, 72–90 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Duggal, S., Chugh, T.D., Duggal, A.K.: HIV and malnutrition: effects on immune system. Clin. Dev. Immunol. 2012, 784740 (2012)

    Google Scholar 

  13. Guidotti, L.G., Chisari, F.V.: Noncytolytic control of viral infections by the innate and adaptive immuneresponse. Ann. Rev. Immunol. 19(1), 65–91 (2001)

    Google Scholar 

  14. Guidotti, L.G., Rochford, R., Chung, J., Shapiro, M., Purcell, R., Chisari, F.V.: Viral clearance without destruction of infected cells during acute HBV infection. Science 284(5415), 825–829 (1999)

    Google Scholar 

  15. Hattaf, K., Yousfi, N.: A generalized virus dynamics model with cell-to-cell transmission and cure rate. Adv. Differ. Equ. 2016(1), 174 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Hattaf, K., Yousfi, N., Tridane, A.: Mathematical analysis of a virus dynamics model with general incidence rate and cure rate. Nonlinear Anal. Real World Appl. 13(4), 1866–1872 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Hofbauer, J.: To persist or not to persist-differential equations in ecology

  19. Jung, M.C., Pape, G.R.: Immunology of hepatitis B infection. Lancet Infect. Dis. 2(1), 43–50 (2002)

    Google Scholar 

  20. Lai, X., Zou, X.: Modeling cell-to-cell spread of HIV-1 with logistic target cell growth. J. Math. Anal. Appl. 426(1), 563–584 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Li, F., Wang, J.: Analysis of an HIV infection model with logistic target-cell growth and cell-to-cell transmission. Chaos Solitons Fractals 81, 136–145 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Liu, X., Wang, H., Hu, Z., Ma, W.: Global stability of an HIV pathogenesis model with cure rate. Nonlinear Anal. Real World Appl. 12(6), 2947–2961 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Lucas, W.J.: Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344(1), 169–184 (2006)

    Google Scholar 

  24. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Marsh, M., Helenius, A.: Virus entry: open sesame. Cell 124(4), 729–740 (2006)

    Google Scholar 

  26. Merwaiss, F., Czibener, C., Alvarez, D.E.: Cell-to-cell transmission is the main mechanism supporting bovine viral diarrhea virus spread in cell culture. J. Virol. 93(3), e01776-18 (2019)

    Google Scholar 

  27. Mothes, W., Sherer, N.M., Jin, J., Zhong, P.: Virus cell-to-cell transmission. J. Virol. 84(17), 8360–8368 (2010)

    Google Scholar 

  28. Murase, A., Sasaki, T., Kajiwara, T.: Stability analysis of pathogen-immune interaction dynamics. J. Math. Biol. 51(3), 247–267 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Nowak, M.A., Bangham, C.R.: Population dynamics of immune responses to persistent viruses. Science 272(5258), 74–79 (1996)

    Google Scholar 

  30. Obaid, M.A., Elaiw, A.: Stability of virus infection models with antibodies and chronically infected cells. In: Abstract and Applied Analysis, vol. 2014. Hindawi (2014)

  31. Organization, W.H., et al.: Global health sector strategy on HIV 2016–2021. Towards ending aids. Tech. rep., World Health Organization (2016)

  32. Pan, S., Chakrabarty, S.P.: Threshold dynamics of HCV model with cell-to-cell transmission and a non-cytolytic cure in the presence of humoral immunity. Commun. Nonlinear Sci. Numer. Simul. 61, 180–197 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Reyes-Silveyra, J., Mikler, A.R.: Modeling immune response and its effect on infectious disease outbreak dynamics. Theor. Biol. Med. Model. 13(1), 10 (2016)

    Google Scholar 

  34. Sattentau, Q.: Avoiding the void: cell-to-cell spread of human viruses. Nat. Rev. Microbiol. 6(11), 815 (2008)

    Google Scholar 

  35. Shen, P., Fillatreau, S.: Suppressive functions of b cells in infectious diseases. Int. Immunol. 27(10), 513–519 (2015)

    Google Scholar 

  36. Shi, X., Zhou, X., Song, X.: Dynamical behavior of a delay virus dynamics model with CTL immune response. Nonlinear Anal. Real World Appl. 11(3), 1795–1809 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Stafford, M.A., Corey, L., Cao, Y., Daar, E.S., Ho, D.D., Perelson, A.S.: Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203(3), 285–301 (2000)

    Google Scholar 

  38. Tian, Y., Liu, X.: Global dynamics of a virus dynamical model with general incidence rate and cure rate. Nonlinear Anal. Real World Appl. 16, 17–26 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Uzman, A.: Molecular biology of the cell: Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. Biochem. Mol. Biol. Educ. 31(4), 212–214 (2003)

    Google Scholar 

  40. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Wang, K., Jin, Y., Fan, A.: The effect of immune responses in viral infections: a mathematical model view. Discrete Contin. Dyn. Syst. Ser. B 19, 3379–3396 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Wodarz, D.: Mathematical models of immune effector responses to viral infections: virus control versus the development of pathology. J. Comput. Appl. Math. 184(1), 301–319 (2005)

    MathSciNet  MATH  Google Scholar 

  43. Wodarz, D., Christensen, J.P., Thomsen, A.R.: The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol. 23(4), 194–200 (2002)

    Google Scholar 

  44. Xiao, F., Fofana, I., Heydmann, L., Barth, H., Soulier, E., Habersetzer, F., Doffoël, M., Bukh, J., Patel, A.H., Zeisel, M.B., et al.: Hepatitis C virus cell–cell transmission and resistance to direct-acting antiviral agents. PLoS Pathog. 10(5), e1004128 (2014)

    Google Scholar 

  45. Yousfi, N., Hattaf, K., Rachik, M.: Analysis of a HCV model with ctl and antibody responses. Appl. Math. Sci. 3(57), 2835–2845 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Zhong, P., Agosto, L.M., Munro, J.B., Mothes, W.: Cell-to-cell transmission of viruses. Curr. Opin. Virol. 3(1), 44–50 (2013)

    Google Scholar 

  47. Zhou, X., Song, X., Shi, X.: A differential equation model of HIV infection of cd4+ t-cells with cure rate. J. Math. Anal. Appl. 342(2), 1342–1355 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Zumla, A., Malon, P., Henderson, J., Grange, J.M.: Impact of HIV infection on tuberculosis. Postgrad. Med. J. 76(895), 259–268 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mausumi Dhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, M., Samaddar, S. & Bhattacharya, P. Modeling the cell-to-cell transmission dynamics of viral infection under the exposure of non-cytolytic cure. J. Appl. Math. Comput. 65, 885–911 (2021). https://doi.org/10.1007/s12190-020-01420-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01420-w

Keywords

Mathematics Subject Classification

Navigation