Skip to main content
Log in

On the global asymptotic stability of a predator–prey model with Crowley–Martin function and stage structure for prey

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this work, we present a mathematically rigorous analysis for the local and global asymptotic stability of a predator–prey model with Crowley–Martin function and stage structure for prey, which was proposed in a previous work [Applied Mathematics and Computation 232(2014) 810–819]. In the previous work, the local and global stability of the unique positive equilibrium point of this model were established under some sufficient conditions. Our objective is to re-establish the stability of this equilibrium point without these sufficient conditions. For this purpose, we propose a novel approach to show that the sufficient conditions proposed in the previous work are completely freed. More clearly, we use a well-known stability theorem of continuous-time nonlinear cascade systems and Lyapunov stability theorem to prove that the unique positive equilibrium point is asymptotically stable if it exists. Furthermore, the global stability of the boundary equilibrium point is also established based on the approach. Finally, some numerical simulations are performed to confirm the validity of the constructed theoretical results. The results indicate that there is a good agreement between the numerical simulations and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen, L.J.S.: An Introduction to Mathematical Biology. Prentice Hall, New Jersey (2007)

    Google Scholar 

  2. Ascher, U. M., Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Society for Industrial and Applied Mathematics (1998)

  3. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001)

    Book  Google Scholar 

  4. Colucci, R.: Coexistence in a one-predator, two-prey system with indirect effects. J. Appl. Math., 2013, Article ID 625391, 13 https://doi.org/10.1155/2013/625391

  5. Colucci, R.: Periodic Orbits for a three-dimensional biological differential systems. 2013, Article ID 465183, 10 https://doi.org/10.1155/2013/465183

  6. Hadidi, E.: Bifurcation of limit cycle for three-dimensional Lotka-Volterra dynamical system. Appl. Math. Sci. 7, 6909–6916 (2013)

    MathSciNet  Google Scholar 

  7. Dang, Q.A., Hoang, M.T.: Positivity and global stability preserving NSFD schemes for a mixing propagation model of computer viruses. J. Comput. Appl. Math. 374, 112753 (2020)

    Article  MathSciNet  Google Scholar 

  8. Dang, Q.A., Hoang, M.T., Trejos, D.Y., Valverde, J.C.: Feedback control variables to restrain the Babesiosis disease. Math. Methods Appl. Sci. 42(18), 7517–7527 (2019)

    Article  MathSciNet  Google Scholar 

  9. Dang, Q.A., Hoang, M.T.: Nonstandard finite difference schemes for a general predator-prey system. J. Comput. Sci. 36, 101015 (2019)

    Article  MathSciNet  Google Scholar 

  10. Dang, Q.A., Hoang, M.T.: Complete global stability of a metapopulation model and its dynamically consistent discrete models. Qualit. Theory Dyn. Syst. 18, 461–475 (2019)

    Article  Google Scholar 

  11. Dang, Q.A., Hoang, M.T.: Lyapunov direct method for investigating stability of nonstandard finite difference schemes for metapopulation models. J. Differ. Equ. Appl. 24, 15–47 (2018)

    Article  MathSciNet  Google Scholar 

  12. Dang, Q.A., Hoang, M.T.: Numerical dynamics of nonstandard finite difference schemes for a computer virus propagation model. Int. J. Dynam. Control (2019). https://doi.org/10.1007/s40435-019-00604-y

    Article  Google Scholar 

  13. Hoang, M.T., Nagy, A.M.: Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes. Chaos, Solitons Fractals 123, 24–34 (2019)

    Article  MathSciNet  Google Scholar 

  14. Hoang, M. T., Egbelowo, O. F.: Nonstandard finite difference schemes for solving an SIS epidemic model with standard incidence. Rend. Circ. Mat. Palermo, II. Ser. https://doi.org/10.1007/s12215-019-00436-x(2019)

  15. Hoang, M.T., Egbelowo, O.F.: On the global asymptotic stability of a hepatitis B epidemic model and its solutions by nonstandard numerical schemes. Bol. Soc. Mat. Mex. https://doi.org/10.1007/s40590-020-00275-2 (2020)

  16. Hu, H., Yi, T., Zou, X.: On spatial-temporal dynamics of a Fisher-KPP equation with a shifting environment. Proc. Am. Math. Soc. 148, 213–221 (2020)

    Article  MathSciNet  Google Scholar 

  17. Huang, C., Zhang, H., Cao, J., Hu, H.: Stability and hopf bifurcation of a delayed prey-predator model with disease in the predator. Int. J. Bifur. Chaos 29, 1950091 (2019)

    Article  MathSciNet  Google Scholar 

  18. Huang, C., Zhang, H., Huang, L.: Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term. Commun. Pure Appl. Anal. 18, 3337–3349 (2019)

    Article  MathSciNet  Google Scholar 

  19. Huang, C., Yang, Z., Yi, T., Zou, X.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256, 2101–2114 (2014)

    Article  MathSciNet  Google Scholar 

  20. Huang, C., Yang, X., Cao, J.: Stability analysis of Nicholson’s blowflies equation with two different delays. Math. Comput. Simul. 171, 201–206 (2020)

    Article  MathSciNet  Google Scholar 

  21. Korobeinikov, A.: A lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14, 697–699 (2002)

    Article  MathSciNet  Google Scholar 

  22. Korobeinikov, A., Wake, G.C.: Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15, 955–960 (2002)

    Article  MathSciNet  Google Scholar 

  23. Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14, 697–699 (2001)

    Article  MathSciNet  Google Scholar 

  24. Korobeinikov, A.: Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 68, 615 (2006). https://doi.org/10.1007/s11538-005-9037-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Ladino, L.M., Sabogal, E.I., Valderdi, J.C.: General functional response and recruitment in a predator-prey system with capture on both species. Math. Methods Appl. Sci. 38, 2876–2887 (2015)

    Article  MathSciNet  Google Scholar 

  26. Li, W., Huang, L., Ji, J.: Periodic solution and its stability of a delayed Beddington-DeAngelis type predator-prey system with discontinuous control strategy. Math. Methods Appl. Sci. 42, 4498–4515 (2019)

    Article  MathSciNet  Google Scholar 

  27. Long, X., Gong, S.: New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays. Appl. Math. Lett. 100, 106027 (2020)

    Article  MathSciNet  Google Scholar 

  28. Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis, London (1992)

    Book  Google Scholar 

  29. Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer, Berlin (2015)

    Book  Google Scholar 

  30. Meng, X.Y., Hou, H.F., Xiang, H., Yin, Q.Y.: Stability in a predator-prey model with Crowley-Martin function and stage structure for prey. Appl. Math. Comput. 232, 810–819 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Seibert, P., Suarez, R.: Global stabilization of nonlinear cascade systems. Syst. Control Lett. 14, 347–352 (1990)

    Article  MathSciNet  Google Scholar 

  32. Shahruzd, S.M., Kalkin, A.: Limit cycle behavior in three-or higher-dimensional non-linear systems: the Lotka-Volterra example. J. Sound Vib. 246, 379–386 (2001)

    Article  MathSciNet  Google Scholar 

  33. Sundarapandian, V.: Global asymptotic stability of nonlinear cascade systems. Appl. Math. Lett. 15, 275–277 (2002)

    Article  MathSciNet  Google Scholar 

  34. Tan, Y., Huang, C., Sun, B., Wang, T.: Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458, 1115–1130 (2018)

    Article  MathSciNet  Google Scholar 

  35. Wang, J., Chen, X., Huang, L.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469, 405–427 (2019)

    Article  MathSciNet  Google Scholar 

  36. Vargas-De-Leon, C.: On the global stability of SIS, SIR and SIRS epidemic models with standard incidence. Chaos, Solitons & Fractals 44, 1106–1110 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referees and the editor for useful comments that led to a great improvement of the paper. This work is supported by Institute of Information Technology, Vietnam Academy of Science and Technology under the Grant Number CS 20.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manh Tuan Hoang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, M.T. On the global asymptotic stability of a predator–prey model with Crowley–Martin function and stage structure for prey. J. Appl. Math. Comput. 64, 765–780 (2020). https://doi.org/10.1007/s12190-020-01378-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01378-9

Keywords

Navigation