Skip to main content
Log in

Global extended Krylov subspace methods for large-scale differential Sylvester matrix equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a new numerical methods for solving large-scale differential Sylvester matrix equations with low rank right hand sides. These differential matrix equations appear in many applications such as robust control problems, model reduction problems and others. We present two approaches based on extended global Arnoldi process. The first one is based on approximating exponential matrix in the exact solution using the global extended Krylov method. The second one is based on a low-rank approximation of the solution of the corresponding Sylvester equation using the extended global Arnoldi algorithm. We give some theoretical results and report some numerical experiments to show the effectiveness of the proposed methods compared with the extended block Krylov method given in Hached and Jbilou (Numer Linear Algebra Appl 255:e2187, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abou-Kandil, H., Frelling, G., Ionescu, V., Jank, G.: Matrix Riccati equations in control and systems theory. In: Systems and Control Foundations and Applications. Birkhäuser, Basel (2003)

  2. Agoujil, S., Bentbib, A.H., Jbilou, K., Sadek, El.M.: A minimal residual norm method for large-scale Sylvester matrix equations. Electron. Trans. Numer. Anal. 43, 45–59 (2014)

  3. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation \(A X + X B = C\), algorithm 432. Commun. ACM 15, 820–826 (1972)

    Article  MATH  Google Scholar 

  4. Behr, M., Benner, P., Heiland, J.: Solution formulas for differential Sylvester and Lyapunov equations. arXiv:1811.08327v1

  5. Benner, P., Mena, H.: Rosenbrock methods for solving Riccati differential equations. IEEE Trans. Autom. Control 58(11), 2950–2957 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benner, P., Li, R.C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233, 1035–1045 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benner, P., Mena, H.: Numerical solution of the infinite-dimensional \(LQR\)-problem and the associated Riccati differential equations. J. Numer. Math. 26(1), 1–20 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bentbib, A.H., Jbilou, K., Sadek, El.M.: On some Krylov subspace based methods for large-scale nonsymmetric algebraic Riccati problems. Comput. Math. Appl. 70, 2555–2565 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bentbib, A.H., Jbilou, K., Sadek, El.M.: On some extended block Krylov based methods for large scale nonsymmetric Stein matrix equations. Mathematics 5, 21 (2017)

    Article  MATH  Google Scholar 

  10. Bouhamidi, A., Jbilou, K.: A note on the numerical approximate solutions for generalized Sylvester matrix equations with applications. Appl. Math. Comput. 206(2), 687–694 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Berlin (2008)

    Book  MATH  Google Scholar 

  13. Corless, M.J., Frazho, A.E.: Linear Systems and Control—An Operator Perspective, Pure and Applied Mathematics. Marcel Dekker, New York (2003)

    Book  MATH  Google Scholar 

  14. Datta, B.N.: Numerical Methods for Linear Control Systems Design and Analysis. Elsevier, New York (2003)

    Google Scholar 

  15. Davis, T.: The University of Florida sparse matrix collection, NA digest, vol. 97(23) (7 June 1997). http://www.cise.ufl.edu/research/sparse/matrices. Accessed 10 June 2016

  16. Druskin, V., Knizhnerman, L.: Extended Krylov subspaces approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19(3), 755–771 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Golub, G.H., Nash, S., Van Loan, C.: A Hessenberg–Schur method for the problem \(AX+XB=C\). IEEC Trans. Autom. Control AC–24(1979), 909–913 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hached, M., Jbilou, K.: Numerical solutions to large-scale differential Lyapunov matrix equations. Numer. Algorithms 79, 741–757 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hached, M., Jbilou, K.: Computational Krylov-based methods for large-scale differential Sylvester matrix problems. Numer. Linear Algebra Appl. 255(5), e2187 (2018). https://doi.org/10.1002/nla.2187

    Article  MathSciNet  MATH  Google Scholar 

  20. Heyouni, M.: Extended Arnoldi methods for large low-rank Sylvester matrix equations. Appl. Numer. Math. 60, 1171–1182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26(4), 1179–1193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jagels, C., Reichel, L.: Recursion relations for the extended Krylov subspace method. Linear Algebra Appl. 434(7), 1716–1732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jbilou, K.: Low-rank approximate solution to large Sylvester matrix equations. App. Math. Comput. 177, 365–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jbilou, K.: ADI preconditioned Krylov methods for large Lyapunov matrix equations. Linear Algebra Appl. 432, 2473–2485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Koskela, A., Mena, H.: Analysis of Krylov subspace approximation to large scale differential Riccati equations. arXiv:1705.07507v4

  27. Mena, H., Ostermann, A., Pfurtscheller, L., Piazzola, C.: Numerical low-rank approximation of matrix differential equations. J. Comput. Appl. Math. 340, 602–614 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mena, H., Lang, N., Saak, J.: On the benefits of the \(LDL^T\) factorization for large-scale differential matrix equation solvers. Linear Algebra Appl. 480, 44–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moler, C.B., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801836 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Penzl, T.: Lyapack a matlab toolbox for large Lyapunov and Riccati equations, model reduction problems, and linear-quadratic optimal control problems. http://www.tu-chemintz.de/sfb393/lyapack

  31. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. J. Comput. 5, 329–330 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saad, Y.: Numerical solution of large Lyapunov equations. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C. (eds.) Signal Processing, Scattering, Operator Theory and Numerical Methods. Proceedings of the International Symposium MTNS-89, vol. 3, pp. 503–511. Birkhäuser, Boston (1990)

    Google Scholar 

  33. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stillfjord, T.: Low-rank second-order splitting of large-scale differential Riccati equations. IEEE Trans. Autom. Control 60(10), 2791–2796 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Van Der Vorst, H.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El. Mostafa Sadek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadek, E.M., Bentbib, A.H., Sadek, L. et al. Global extended Krylov subspace methods for large-scale differential Sylvester matrix equations. J. Appl. Math. Comput. 62, 157–177 (2020). https://doi.org/10.1007/s12190-019-01278-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01278-7

Keywords

Mathematics Subject Classification

Navigation