Skip to main content
Log in

Derivations of the Schrödinger algebra and their applications

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The Schrödinger algebra is a non-semisimple Lie algebra and plays an important role in mathematical physics and its applications. In this paper, all derivations of the Schrödinger algebra are determined. As applications, all biderivations, linear commuting maps and commutative post-Lie algebra structures on the Schrödinger algebra are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballesteros, A., Herranz, F.J., Parashar, P.: \((1+ 1)\) Schrödinger Lie bialgebras and their Poisson–Lie groups. J. Phys. A Math. Gen. 33(17), 3445–3665 (2000)

    Article  MATH  Google Scholar 

  2. Brešar, M.: On generalized biderivations and related maps. J. Algebra 172, 764–786 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brešar, M.: Commuting maps: a survey. Taiwan. J. Math. 8, 361–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burde, D., Dekimpe, K., Vercammen, K.: Affine actions on Lie groups and post-Lie algebra structures. Linear Algebra Appl. 437, 1250–1263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burde, D., Moens, W.A.: Commutative post-Lie algebra structures on Lie algebras. J. Algebra 467, 183–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z.: Biderivations and linear commuting maps on simple generalized Witt algebras over a field. Electron. J. Linear Algebra 31, 1–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dobrev, V.K., Doebner, H.D., Mrugalla, C.: A q-Schrödinger algebra, its lowest-weight representations and generalized q-deformed heat/Schrödinger equations. J. Phys. A Math. Gen. 29, 5909 (1996)

    Article  MATH  Google Scholar 

  8. Dobrev, V.K., Doebner, H.D., Mrugalla, C.: Lowest weight representations of the Schrödinger algebra and generalized heat/Schrödinger equations. Rep. Math. Phys. 39, 201–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, Y., Wang, Y.: Biderivations of generalized matrix algebras. Linear Algebra Appl. 438, 4483–4499 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubsky, B.: Classification of simple weight modules with finite-dimensional weight spaces over the Schrödinger algebra. Linear Algebra Appl. 443, 204–214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dubsky, B., Lü, R., Mazorchuk, V., Zhao, K.: Category \(\cal{O}\) for the Schrödinger algebra. Linear Algebra Appl. 460, 17–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, G., Dai, X.: Super-biderivations of Lie superalgebras. Linear Multilinear Algebra 65, 58–66 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghosseiri, N.M.: On biderivations of upper triangular matrix rings. Linear Algebra Appl. 438, 250–260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, X., Wang, D., Xia, C.: Linear commuting maps and biderivations on the Lie algebras \(W (a, b)\). J. Lie Theory 26, 777–786 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Munthe-Kaas, H.Z., Lundervold, A.: On post-Lie algebras, Lie–Butcher series and moving frames. Found. Comput. Math. 13, 583–613 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pan, Y., Liu, Q., Bai, C., Guo, L.: PostLie algebra structures on the lie algebra \(sl(2, \mathbb{C})\). Electron. J. Linear Algebra 23, 180–197 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Perroud, M.: Projective representations of the Schrödinger group. Helv. Phys. Acta 50, 233–252 (1977)

    MathSciNet  Google Scholar 

  18. Posner, E.C.: Derivations in prime rings. PROC. Am. Math. Soc. 8, 1093–1100 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tang, X., Zhang, Y.: Post-Lie algebra structures on solvable Lie algebra \(t (2,\mathbb{C})\). Linear Algebra Appl. 462, 59–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tang, X.: Biderivations of finite-dimensional complex simple Lie algebras. Linear Multilinear Algebra (2017). https://doi.org/10.1080/03081087.2017.1295433

  21. Tang, X.: Biderivations, linear commuting maps and commutative post-Lie algebra structures on W-algebras. Commun. Algebra. 45, 5252–5261 (2017)

  22. Vallette, B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208, 699–725 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, D., Yu, X.: Biderivations and linear commuting maps on the Schrödinger–Virasoro Lie algebra. Commun. Algebra 41, 2166–2173 (2013)

    Article  MATH  Google Scholar 

  24. Wang, D., Yu, X., Chen, Z.: Biderivations of the parabolic subalgebras of simple Lie algebras. Commun. Algebra 39, 4097–4104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, Y., Zhu, L.: Simple weight modules for Schrödinger algebra. Linear Algebra Appl. 438, 559–563 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xia, C., Wang, D., Han, X.: Linear super-commuting maps and super-biderivations on the super-Virasoro algebras. Commun. Algebra 44, 5342–5350 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, X., Cheng, Y.: Simple Schrödinger modules which are locally finite over the positive part. J. Pure Appl. Algebra 219, 2799–2815 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the referees for their valuable suggestions and comments. This work was supported in part by NSFC [Grant Number 11771069], NSF of Heilongjiang Province [Grant Number A2015007], and Fund of the Heilongjiang Education Committee [Grant Numbers 12531483 and HDJCCX-2016211].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Tang, X. Derivations of the Schrödinger algebra and their applications. J. Appl. Math. Comput. 58, 567–576 (2018). https://doi.org/10.1007/s12190-017-1157-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1157-5

Keywords

Mathematics Subject Classification

Navigation