Skip to main content
Log in

Sturm–Picone comparison theorem of a kind of conformable fractional differential equations on time scales

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the Sturm–Picone comparison theorem of conformable fractional differential equations on arbitrary time scales. Since the Picone identity plays an important role in discussing the Sturm comparison theorem. Firstly, we establish the Picone identity of conformable fractional differential equations on arbitrary time scales. By using this identity, we obtain our main result—the Sturm–Picone comparison theorem of conformable fractional differential equations on time scales. This result not only extends and improves the corresponding continuous and discrete time statement, but also contains the usual time scale case when the order of differentiation is one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Picone, M.: Sui valori eccezionali di un parametro da cui dipend unèquazione differenziale linear ordinaria del second ordine. JMPA 11, 1–141 (1909)

    Google Scholar 

  2. Bikhoff, G.: On solution of ordinary linear homogeneous differential equations of the third order. Ann. Math. 12, 103–127 (1911)

    Article  MathSciNet  Google Scholar 

  3. Fite, W.B.: Concerning the zeros of solutions of certain differential equations. Trans. Am. Math. Soc. 19, 341–352 (1917)

    Article  MathSciNet  Google Scholar 

  4. Reynolds, C.: On the zeros of solution of homogeneous linear differential equations. Trans. Am. Math. Soc. 22, 220–229 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kamke, E.: A new proof of Sturm’s comparison theorems. Am. Math. Mon. 4, 417–421 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  6. Reid, W.T.: A comparison theorem for self-adjoint differential equations of second order. Ann. Math. 65, 197–202 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  7. Leighton, W.: Comparison theorems for linear differential equations of second order. Proc. Am. Math. 13, 603–610 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leighton, W.: Some elementary Sturm theory. J. Differ. Equ. 4, 187–193 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhuang, R.: Sturm comparison theorem of solution for second order nonlinear differential equations. Ann. Differ. Equ. 19, 480–486 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Zhuang, R., Wu, H.: Sturm comparison theorem of solution for second order nonlinear differential equations. Appl. Math. Comput. 162, 1227–1235 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Kelley, W.G., Peterson, A.: Difference Equations: An Introduction with Applications, 2nd edn. Academic Press, San Deigo (2001)

    MATH  Google Scholar 

  12. Aharonov, D., Bohner, M., Elias, U.: Discrete Sturm comparison theorems on finite and infinite intervals. J. Differ. Equ. Appl. 18, 1763–1771 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hilger, S.: Ein Mabkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg (1988)

  14. Agarwal, R.P., Bohner, M., Wong, P.J.Y.: Sturm–Liouville eigenvalue problems on time scales. Appl. Math. Comput. 99, 153–166 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Results Math. 35, 3–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  17. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  18. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  20. Kilbas, A.A., Srivastava, M.H., Trujillo, J.J.: Theory and application of fractional differential equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  21. Boyadjiev, L., Scherer, R.: Fractional extensions of the temperature field problem in oil strata. Kuwait J. Sci. Eng. 31, 15–32 (2004)

    Google Scholar 

  22. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bastos, N.R.O.: Fractional Calculus on Time Scales. Ph.D. thesis, University of Aveiro (2012)

  24. Anastassiou, G.A.: Elements of right delta fractional calculus on time scales. J. Concr. Appl. Math. 10, 159–167 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Auch, T.J.: Development and Application of Difference and Fractional Calculus on Discrete Time Scales. Ph.D. thesis, University of Nebraska (2013)

  26. Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discret. Cont. Dyn. Syst. 29, 417–437 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Discrete-time fractional variational problems. Signal Process. 91, 513–524 (2011)

    Article  MATH  Google Scholar 

  28. Bastos, N.R.O., Mozyrska, D., Torres, D.F.M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11, 1–9 (2011)

    MathSciNet  Google Scholar 

  29. Kisela, T.: Power functions and essentials of fractional calculus on isolated time scales. Adv. Differ. Equ. 2013, 259 (2013)

    Article  MathSciNet  Google Scholar 

  30. Williams, P.A.: Unifying Fractional Calculus with Time Scales. Ph.D. thesis, The University of Melbourne (2012)

  31. Benkhettou, N., da Cruz, A.M.C.B., Torres, D.F.M.: A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration. Signal Process. 107, 230–237 (2015)

    Article  Google Scholar 

  32. Benkhettou, N., Hassani, S., Torres, D.F.M.: A conformable fractional calculus on arbitrary time scales. J. King Saud Univ. Sci. 28, 93–98 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the NNSF of China (Grant 11571202) and the NSF of University of Jinan (XKY1511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Sun, S. Sturm–Picone comparison theorem of a kind of conformable fractional differential equations on time scales. J. Appl. Math. Comput. 55, 191–203 (2017). https://doi.org/10.1007/s12190-016-1032-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1032-9

Keywords

Mathematics Subject Classification

Navigation