Skip to main content
Log in

Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a fractional-order predator-prey model incorporating a prey refuge is proposed. We first prove the existence, uniqueness, non-negativity and boundedness of the solutions for the considered model. Moreover, we also analyze the existence of various equilibrium points, and some sufficient conditions are derived to ensure the global asymptotic stability of the predator-extinction equilibrium point and coexistence equilibrium point. Finally, some numerical simulations are carried out for illustrating the analytic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hassell, M.: The Dynamics of Arthropod Predator-Prey System. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  2. Smith, M.: Models in Ecology. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  3. Tripath, J., Abbas, S., Thakur, M.: A density dependent delayed predator-prey model with Beddington–DeAngelis type function response incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 22, 427–450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wei, F., Fu, Q.: Hopf bifurcation and stability for predator-prey systems with Beddington–DeAngelis type functional response and stage structure for prey incorporating refuge. Appl. Math. Modell. 40, 126–134 (2016)

    Article  MathSciNet  Google Scholar 

  5. Ma, Z., Chen, F., Wu, C., Chen, W.: Dynamic behaviors of a Lotka–Volterra predator-prey model incorporating a prey refuge and predator mutual interference. Appl. Math. Comput. 219, 7945–7953 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Tang, G., Tang, S., Cheke, R.: Global analysis of a Holling type II predator-prey model with a constant prey refuge. Nonlinear Dyn. 76, 635–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma, Z.: The research of predator-prey models incorporating prey refuges. Ph.D. Thesis, Lanzhou University, Lanzhou (2010)

  8. Kar, T.: Stability analysis of a prey-predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10, 681–691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, Y., Chen, F., Li, Z.: Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge. Appl. Math. Comput. 182, 672–683 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Tripathi, J., Abbas, S., Thakur, M.: Dynamical analysis of a prey-predator model with Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 80, 177–196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bianca, C.: Modeling complex systems with particles refuge by thermostatted kinetic theory methods. Abstr. Appl. Anal. doi:10.1155/2013/152174 (2014)

  12. Bianca, C., Dogba, C., Guerrini, L.: A thermostatted kinetic framework with particle refuge for the modeling of tumors hiding. Appl. Math. Inf. Sci. 8, 469–473 (2014)

    Article  Google Scholar 

  13. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  14. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  15. El-Sayed, A.: Fractional-order diffusion-wave equation. Int. J. Theor. Phys. 35, 311–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. El-Mesiry, A., Ahmed, E.: On a factional model for earthquakes. Appl. Math. Comput. 178, 207–211 (2006)

    MathSciNet  Google Scholar 

  17. Li, H., Jiang, Y., Wang, Z., Hu, C.: Global stability problem for feedback control systems of impulsive fractional differential equations on networks. Neurocomputing 161, 155–161 (2015)

    Article  Google Scholar 

  18. Hegazi, A., Ahmed, E., Matouk, A.: On chaos control and synchronization of the commensurate fractional order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18, 1193–1202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ahmed, E., Elgazzar, A.: On fractional order differential equations model for nonlocal epidemics. Phys. A 379, 607–614 (2007)

    Article  MathSciNet  Google Scholar 

  20. Das, S., Gupta, P.: A mathematical model on fractional Lotka–Volterra equations. J. Theor. Biol. 277, 1–6 (2011)

    Article  MathSciNet  Google Scholar 

  21. Rivero, M., Trujillo, J., Vazquez, L., Velasco, M.: Fractional dynamics of populations. Appl. Math. Comput. 218, 1089–1095 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Javidi, M., Nyamoradi, N.: Dynamic analysis of a fractional order prey-predator interaction with harvesting. Appl. Math. Modell. 37, 8946–8956 (2013)

    Article  MathSciNet  Google Scholar 

  23. Rihan, F., Lakshmanan, S., Hashish, A., Rakkiyappan, R., Ahmed, E.: Fractional-order delayed predator-prey systems with Holling type-II functional response. Nonlinear Dyn. 80, 777–789 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Elsadany, A., Matouk, A.: Dynamical behaviors of fractional-order Lotka–Volterra predator-prey model and its discretization. J. Appl. Math. Comput. 49, 269–283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ahmed, E., El-Sayed, A., El-Saka, H.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu, J., Hu, H., Zhou, S., Lin, X.: Generalized Mittag–Leffler stability of multi-variables fractional order nonlinear systems. Automatica 49, 1798–1803 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Odibat, Z., Shawagfeh, N.: Generalized Taylors formula. Appl. Math. Comput. 186, 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Aziz-Alaoui, M.: Study of a Leslie–Gower-type tritrophic population model. Chaos Soliton Fract. 14, 1275–1293 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wei, Z., Li, Q., Che, J.: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative. J. Math. Anal. Appl. 367, 260–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vargas-De-León, C.: Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 24, 75–85 (2015)

    Article  MathSciNet  Google Scholar 

  31. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. RWA 26, 289–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Petras, I.: Fractional-order Nonlinear Systems: Modeling Aanlysis and Simulation. Higher Education Press, Beijing (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant Nos. 11371287, 11361059, 11271312, 61563048), the International Science and Technology Cooperation Program of China (Grant No. 2010DFA14700), and the Development Project of Innovative Talents of Technological Youth of Xinjiang (Grant No. 2014721014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Li Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HL., Zhang, L., Hu, C. et al. Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J. Appl. Math. Comput. 54, 435–449 (2017). https://doi.org/10.1007/s12190-016-1017-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1017-8

Keywords

Mathematics Subject Classification

Navigation