Skip to main content
Log in

Positive definite solutions and perturbation analysis of a class of nonlinear matrix equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of nonlinear matrix equation of the type \(X+\sum _{i=1}^mA_i^{*}X^{-q}A_i-\sum _{j=1}^nB_{j}^{*}X^{-r}B_j=Q\), where \(0<q,\,r\le 1\) and Q is positive definite. Based on the Schauder fixed point theorem and Bhaskar–Lakshmikantham coupled fixed point theorem, we derive some sufficient conditions for the existence and uniqueness of the positive definite solution to such equations. An iterative method is provided to compute the unique positive definite solution. A perturbation estimation and the explicit expression of Rice condition number of the unique positive definite solution are also established. The theoretical results are illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berzig, M.: Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem. Applied Mathematics Letters 25, 1638–1643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berzig, M., Duan, X.F., Samet, B.: Positive definite solution of the matrix equation \(X=Q-A^{*}X^{-1}A+B^{*}X^{-1}B\) via Bhaskar-Lakshmikantham fixed point theorem. Mathematical Sciences 6, 27–32 (2012)

  3. Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics. Springer-Verlag, (1997)

  4. Bhaskar, T.G., Lakshmikantham, V.: Fixed point theory in partially ordered metric spaces and applications. Nonlinear Anal. 65, 1379–1393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buzbee, B.L., Golub, G.H., Nilson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan, X.F., Liao, A.P.: On Hermitian positive definite solution of the matrix equation \(X-\sum _{i=1}^{m}A_{i}^{*}X^{r}A_{i}=Q\). J. Comput. Appl. Math. 229(1), 27–36 (2009)

    Article  MATH  Google Scholar 

  7. Duan, X.F., Wang, Q.W., Li, C.M.: Positive definite solution of a class of nonlinear matrix equation. Linear and Multilinear Algebra, 1-14 (2013)

  8. Duan, X.F., Wang, Q.W., Liao, A.P.: On the matrix equation \(X-\sum _{i=1}^{m}N_{i}^{*}X^{-1}N_{i}=I\) arising in an interpolation problem. Linear and Multilinear Algebra 61(9), 1992–1205 (2013)

    Article  Google Scholar 

  9. Guo, C.H., Kuo, Y.C., Lin, W.W.: Numerical solution of nonlinear matrix equations arising from Green’s function calculations in nano research. J. Comput. Appl. Math. 236, 4166–4180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hasanov, V.I.: Positive definite solutions of the matrix equations \(X\pm A^{*}X^{-q}A=Q\). Linear Algebra Appl. 404, 166–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, A., Chen, G.: On the Hermitian positive definite solutions of nonlinear matrix equation \(X^s+\sum _{i=1}^{m}A_{i}^{*}X^{-t_1}A_{i}=Q\). Applied Mathematics and Computation 243, 950–959 (2014)

    Article  MathSciNet  Google Scholar 

  12. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford Science Publishers, Oxford (1995)

    MATH  Google Scholar 

  13. Li, J., Zhang, Y.H.: Perturbation analysis of the matrix equation \(X-A^{*}X^{-p}A=Q\). Linear Algebra Appl. 431, 936–945 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Li, Z.Y., Zhou, B., James, L.: Towards positive definite solutions of a class of nonlinear matrix equations. Applied Mathematics and Computation 237, 546–559 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lim, Y.: Solving the nonlinear matrix equation \(X=Q+\Sigma _{i=1}^{m}M_{i}X^{\delta _{i}}M_{i}^{*}\) via a contraction principal. Linear Algebra Appl. 430, 1380–1383 (2009)

    Article  MathSciNet  Google Scholar 

  16. Meini, B.: Efficient computation of the extreme solutions of \(X+A^{*}X^{-1}A=Q\) and \(X-A^{*}X^{-1}A=Q\). Math. Comput. 71, 1189–1204 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Monsalve, M., Raydan, M.: Corrigendum to “A new inversion-free method for a rational matrix equation” [Linear Algebra Appl. 433(1)(2010)64-71]. Linear Algebra Appl. 448, 343–344 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, Z.Y., El-Sayed, S.M., Zhang, X.L.: Iterative methods for the extremal positive definite solution of the matrix equation \(X+A^{*}X^{-\alpha }A=Q\). J. Comput. Appl. Math. 2007, 520–527 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Ran, A.C.M., Reurings, M.C.B.: A nonlinear matrix equation connected to interpolation theory. Linear Algebra Appl. 379, 289–304 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rice, J.R.: A theory of condition. SIAM J. Numer. Anal. 3, 287–310 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sakhnovich, L.A.: Interpolation Theory and its Applications. In: Mathematics and its Applications, 428, Kilwer Academic, Dordrecht (1997)

  22. Sarhan, A.M., El-Shazy, N.M., Shehata, E.M.: On the existence of extremal positive definite solutions of the nonlinear matrix equation \(X^{r}+\Sigma _{i=1}^{m}A_{i}^{*}X^{\delta _{i}}A_{i}=I\). Math. Comput. Model. 51, 1107–1117 (2010)

    Article  Google Scholar 

  23. Sun, J.G., Xu, S.F.: Perturbation analysis of the maximal solution of the matrix equation \(X+A^{*}X^{-1}A=P. \Pi \). Linear Algebra Appl. 362, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yin, X.Y., Liu, S.Y., Fang, L.: Solutions and perturbation estimates for the matrix equation \(X^{s}+ A^{*}X^{-t}A=Q\). Linear Algebra Appl. 431, 1409–1421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yin, X.Y., Wen, R.P., Fang, L.: On the nonlinear matrix equation \(X+\sum _{i=1}^{m}A_{i}^{*}X^{-q}A_{i}=Q (0<q\le 1)\). Bull. Korean Math. Soc. 51(3), 739–763 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yong, J.M., Zhou, Z.Y.: Stochastic controls, Hamiltonian systems and HJB equations. Springer-Verlag, New York(NY) (1999)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees for providing valuable comments and suggestions which improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Yin.

Additional information

This work is supported by National Science Foundation of China (No. 61373174), Natural Science Foundation of Shaanxi Province (No. 2014JQ1021), and the Fundamental Research Funds for the Central Universities (No. K5051370007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Liu, S. & Yin, X. Positive definite solutions and perturbation analysis of a class of nonlinear matrix equations. J. Appl. Math. Comput. 53, 245–269 (2017). https://doi.org/10.1007/s12190-015-0966-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0966-7

Keywords

Mathematics Subject Classification

Navigation