Skip to main content
Log in

Hesitant fuzzy linguistic ordered weighted distance operators for group decision making

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Since the concept of hesitant fuzzy sets was put forward, different types of extensions have been proposed to deal with actual problems. A hesitant fuzzy linguistic term set provides a linguistic and computational basis to increase the flexibility and richness of linguistic elicitation based on the fuzzy linguistic approach. In this paper, we consider the concept of distance operator and develop a hesitant fuzzy linguistic ordered weighted distance (HFLOWD) operator. The HFLOWD operator is very suitable to deal with the uncertain situations with linguistic information. Moreover, it is also a new aggregation operator that provides parameterized families of distance aggregation operators between the minimum and the maximum distance. Some of its main properties and different families of HFLOWD operators are investigated. Finally, an application of the new approach is offered and comparative analyses are also provided to show the advantages over existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Buckley, J.J., Hayashi, Y.: Fuzzy input-output controllers are universal approximators. Fuzzy Sets Syst. 58, 273–278 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chaudhuri, B.B., Rosenfeld, A.: A modified Hausdorff distance between fuzzy sets. Inf. Sci. 118, 159–171 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Diamond, P., Kloeden, P.E., Kloeden, P.E., Mathematician, A., Kloeden, P.E.: Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  5. Farhadinia, B.: Distance and similarity measures for higher order hesitant fuzzy sets. Knowledge-Based Syst. 55, 43–48 (2014)

    Article  Google Scholar 

  6. Grzegorzewski, P.: Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets Syst. 148, 319–328 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kacprzyk, J.: Multistage Fuzzy Control: A Model-Based Approach to Control and Decision-Making. Willey, New York (1997)

    MATH  Google Scholar 

  8. Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets: Fundamental Theoretical Elements. Academic Press, New York (1975)

    MATH  Google Scholar 

  9. Liao, H.C., Xu, Z.S., Zeng, X.J.: Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inf. Sci. 271, 125–142 (2014)

    Article  MathSciNet  Google Scholar 

  10. Lin, R., Zhao, X.F., Wei, G.X.: Models for selecting an ERP system with hesitant fuzzy linguistic information. J. Intell. Fuzzy Syst. (2013, in press).

  11. Liu, H.W., Wang, G.J.: Multi-criteria decision-making methods based on intuitionistic fuzzy sets. Eur. J. Oper. Res. 179, 220–233 (2007)

    Article  MATH  Google Scholar 

  12. Liu, X.C.: Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Syst. 52, 305–318 (1992)

    Article  MATH  Google Scholar 

  13. Merigó, J., Gil-Lafuente, A.: The ordered weighted averaging distance operator. Lect. Model. Simul. 8, 1–11 (2007)

    Google Scholar 

  14. Merigó, J.M., Casanovas, M.: Induced aggregation operators in decision making with the Dempster-Shafer belief structure. Int. J. Intell. Syst. 24, 934–954 (2009)

    Article  MATH  Google Scholar 

  15. Merigó, J.M., Casanovas, M.: Decision making with distance measures and linguistic aggregation operators. Int. J. Fuzzy Syst. 12, 190–198 (2010)

    Google Scholar 

  16. Merigó, J.M., Casanovas, M.: Decision-making with distance measures and induced aggregation operators. Comput. Ind. Eng. 60, 66–76 (2011a)

    Article  Google Scholar 

  17. Merigó, J.M., Casanovas, M.: Induced aggregation operators in the Euclidean distance and its application in financial decision making. Expert Syst. Appl. 38, 7603–7608 (2011b)

    Article  Google Scholar 

  18. Merigó, J.M., Gil-Lafuente, A.M.: The induced generalized OWA operator. Inf. Sci. 179, 729–741 (2009)

    Article  MATH  Google Scholar 

  19. Merigó, J.M., Gil-Lafuente, A.M.: New decision-making techniques and their application in the selection of financial products. Inf. Sci. 180, 2085–2094 (2010)

    Article  MATH  Google Scholar 

  20. Merigó, J.M., Xu, Y.J., Zeng, S.Z.: Group decision making with distance measures and probabilistic information. Knowledge-Based Syst. 40, 81–87 (2013)

    Article  Google Scholar 

  21. Parreiras, R., Ekel, P.Y., Martini, J., Palhares, R.: A flexible consensus scheme for multicriteria group decision making under linguistic assessments. Inf. Sci. 180, 1075–1089 (2010)

    Article  Google Scholar 

  22. Peng, D., Gao, C., Gao, Z.: Generalized hesitant fuzzy synergetic weighted distance measures and their application to multiple criteria decision-making. Appl. Math. Model. 37, 5837–5850 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rodríguez, R.M., Martínez, L., Herrera, F.: Hesitant fuzzy linguistic term sets. Found. Intell. Syst. 122, 287–295 (2012a)

    Google Scholar 

  24. Rodríguez, R.M., Martinez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20, 109–119 (2012b)

    Article  Google Scholar 

  25. Selçuk Candan, K., Li, W.S.: Similarity-based ranking and query processing in multimedia databases. Data Knowl. Eng. 35, 259–298 (2000)

    Article  MATH  Google Scholar 

  26. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114, 505–518 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010)

    MATH  Google Scholar 

  28. Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. IEEE International Conference on Fuzzy Systems, 2009. FUZZ-IEEE 2009, 1378–1382 (2009).

  29. Turksen, I., Zhong, Z.: An approximate analogical reasoning approach based on similarity measures. IEEE Trans. Syst. Man Cybern. 18, 1049–1056 (1988)

    Article  Google Scholar 

  30. Xia, M.M., Xu, Z.S.: Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 52, 395–407 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xu, Y., Wang, H.: Distance measure for linguistic decision making. Syst. Eng. Procedia 1, 450–456 (2011a)

    Article  Google Scholar 

  32. Xu, Y.J., Da, Q.L.: A method for multiple attribute decision making with incomplete weight information under uncertain linguistic environment. Knowledge-Based Syst. 21, 837–841 (2008)

    Article  Google Scholar 

  33. Xu, Y.J., Da, Q.L.: Standard and mean deviation methods for linguistic group decision making and their applications. Expert Syst. Appl. 37, 5905–5912 (2010)

    Article  Google Scholar 

  34. Xu, Y.J., Merigó, J.M., Wang, H.M.: Linguistic power aggregation operators and their application to multiple attribute group decision making. Appl. Math. Model. 36, 5427–5444 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xu, Y.J., Wang, H.M.: Approaches based on 2-tuple linguistic power aggregation operators for multiple attribute group decision making under linguistic environment. Appl. Soft Comput. 11, 3988–3997 (2011b)

    Article  Google Scholar 

  36. Xu, Y.J., Wang, H.M.: Distance measure for linguistic decision making. Syst. Eng. Procedia 1, 450–456 (2011c)

    Article  Google Scholar 

  37. Xu, Y.J., Wang, H.M., Palacios-Marques, D.: An interactive approach based on alternative achievement scale and alternative comprehensive scale for multiple attribute decision making under linguistic environment. Int. J. Comput. Intell. Syst. 6, 87–95 (2013)

    Article  Google Scholar 

  38. Xu, Z.S.: EOWA and EOWG operators for aggregating linguistic labels based on linguistic preference relations. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 12, 791–810 (2004)

    Article  MATH  Google Scholar 

  39. Xu, Z.S.: Deviation measures of linguistic preference relations in group decision making. Omega 33, 249–254 (2005a)

    Article  Google Scholar 

  40. Xu, Z.S.: An overview of methods for determining OWA weights. Int. J. Intell. Syst. 20, 843–865 (2005b)

    Article  MATH  Google Scholar 

  41. Xu, Z.S., Chen, J.: Ordered weighted distance measure. J. Syst. Sci. Syst. Eng. 17, 432–445 (2008a)

    Article  Google Scholar 

  42. Xu, Z.S., Chen, J.: An overview of distance and similarity measures of intuitionistic fuzzy sets. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 16, 529–555 (2008b)

    Article  MATH  Google Scholar 

  43. Xu, Z.S., Xia, M.M.: Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 181, 2128–2138 (2011a)

    Article  MATH  MathSciNet  Google Scholar 

  44. Xu, Z.S., Xia, M.M.: On distance and correlation measures of hesitant fuzzy information. Int. J. Intell. Syst. 26, 410–425 (2011b)

    Article  MATH  Google Scholar 

  45. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  46. Yager, R.R.: Norms induced from OWA operators. IEEE Trans. Fuzzy Syst. 18, 57–66 (2010)

    Article  Google Scholar 

  47. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning–I. Inf. Sci. 8, 199–249 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zeng, S.Z., Merigó, J.M., Su, W.H.: The uncertain probabilistic OWA distance operator and its application in group decision making. Appl. Math. Model. 37, 6266–6275 (2013)

    Article  MathSciNet  Google Scholar 

  49. Zeng, S.Z., Su, W.H.: Intuitionistic fuzzy ordered weighted distance operator. Knowledge-Based Syst. 24, 1224–1232 (2011)

    Article  Google Scholar 

  50. Zeng, S.Z., Su, W.H.: Linguistic induced generalized aggregation distance operators and their application to decision making. Econ. Comput. Econ. Cybern. Stud. Res. 46, 155–172 (2012)

  51. Zeng, S.Z., Su, W.H., Le, A.B.: Fuzzy generalized ordered weighted averaging distance operator and iIts application to decision making. Int. J. Fuzzy Syst. 14, 402–412 (2012)

    MathSciNet  Google Scholar 

  52. Zhu, B., Xu, Z.S.: Consistency measures for hesitant fuzzy linguistic preference relations. IEEE Trans. Fuzzy Syst. 22, 35–45 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the Associate Editor and the three anonymous reviewers for their constructive comments and suggestions that have further helped to improve the quality and presentation of this paper. This work was supported by National Natural Science Foundation of China (NSFC) Grants (No. 71101043, 71471056 and 71433003), the Fundamental Research Funds for the Central Universities, Program for Excellent Talents in Hohai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yejun Xu.

Appendix

Appendix

In this appendix, we introduce some notations in [9].

The upper bound \(h_S^+ \), and the lower bound \(h_S^- \) of \(h_S \) are defined as follows:

  1. (1)

    \(h_S^+ =\max (s_i )=s_{\max } ,s_i \in h_S \) and \(s_{\max } \ge s_i ,\forall i\).

  2. (2)

    \(h_S^- =\min (s_i )=s_{\min } ,s_i \in h_S \) and \(s_i \ge s_{\min } ,\forall i\).

The notions of the hesitant fuzzy linguistic positive ideal solution \(x^{+}\) and the hesitant fuzzy linguistic negative ideal solution \(x^{-}\) are as follows, respectively:

$$\begin{aligned} x^{+}&= \{h_1^+ ,h_2^+ ,\cdots ,h_n^+ \}\end{aligned}$$
(12)
$$\begin{aligned} x^{-}&= \{h_1^- ,h_2^- ,\cdots ,h_n^- \} \end{aligned}$$
(13)

where

$$\begin{aligned} h_j^+ \!=\!\left\{ {\begin{array}{l} \mathop {\max }\limits _{i=1,2,\cdots ,n} h_{ij}^+ = \mathop {\max }\limits _{\begin{array}{l} i=1,2,\cdots ,n\\ l=1,2,\cdots ,\# h_{ij} \\ \end{array}} \{x_{ij} \}\hbox { for benefit criterion G}_j \\ \mathop {\min }\limits _{i=1,2,\cdots ,n} h_{ij}^- =\mathop {\max }\limits _{\begin{array}{l} i=1,2,\cdots ,n \nonumber \\ l=1,2,\cdots ,\# h_{ij} \\ \end{array}} \{x_{ij} \}\hbox { for cost criterion G}_j \\ \end{array}} \right. ,\quad \hbox { for } j=1,2,\cdots ,n\\ \end{aligned}$$
(14)

and

$$\begin{aligned} h_j^- \!=\!\left\{ {\begin{array}{l} \mathop {\min }\limits _{i=1,2,\cdots ,n} h_{ij}^- =\mathop {\max }\limits _{\begin{array}{l} i=1,2,\cdots ,n \\ l=1,2,\cdots ,\# h_{ij} \\ \end{array}} \{x_{ij} \}\hbox { for benefit criterion G}_j \\ \mathop {\max }\limits _{i=1,2,\cdots ,n} h_{ij}^+ =\mathop {\max }\limits _{\begin{array}{l} i=1,2,\cdots ,n \nonumber \\ l=1,2,\cdots ,\# h_{ij} \\ \end{array}} \{x_{ij} \}\hbox { for cost criterion G}_j \\ \end{array}} \right. ,\quad \hbox {for} j=1,2,\cdots ,n\\ \end{aligned}$$
(15)

Let us define the hesitant fuzzy linguistic term set as \(h_i =\cup _{s_{\delta _i } \in h_i } \{s_{\delta _i } \big | l=1,2, \cdots , \# h_i \}(\# h_i \) is the number of linguistic terms in \(h_i )\).

For two sets of HFLSs \(\tilde{A}=\{h_{\alpha _1 } ,h_{\alpha _2 } ,\cdots ,h_{\alpha _n } \}\) and \(\tilde{B}=\{h_{\beta _1 } ,h_{\beta _2 } ,\cdots ,h_{\beta _n } \}\), we define the generalized weighted distance measure between two HFLTSs as follows:

$$\begin{aligned} d_{gowd} (\tilde{A},\tilde{B})=\left( {\sum _{j=1}^n {w_j \left( {\frac{1}{l}\sum _{l=1}^{\# h_i } {\left( {\frac{\left| {\delta _1^{\sigma (j)} -\delta _2^{\sigma (j)} } \right| }{2t+1}} \right) } ^{\lambda }} \right) } } \right) ^{1/\lambda } \end{aligned}$$
(16)

where \(w\) is the weighting vector of \(h_i \), \(w=(w_1 ,w_2 ,\cdots ,w_n )^{T}\) with \(w_i \in [0,1]\) and \(\sum _{i=1}^n {w_i } =1\), respectively. \(\lambda >0\) and \(\sigma (j):(1,2,\cdots ,n)\rightarrow (1,2,\cdots ,n)\) is a permutation such that

$$\begin{aligned} \frac{1}{l}\sum _{l=1}^{\# b} {\left( {\frac{\left| {\delta _1^{\sigma (j)} -\delta _2^{\sigma (j)} } \right| }{2t+1}} \right) } ^{\lambda }\ge \frac{1}{l}\sum _{l=1}^{\# b} {\left( {\frac{\left| {\delta _1^{\sigma (j+1)} -\delta _2^{\sigma (j+1)} } \right| }{2t+1}} \right) } ^{\lambda },\quad j=1,2,\cdots ,n \end{aligned}$$

In particular, if \(\lambda =1\), then the generalized ordered weighted distance becomes the ordered weighted Hamming distance between \(\tilde{A}\) and \(\tilde{B}\):

$$\begin{aligned} d_{owhd} (\tilde{A},\tilde{B})=\sum _{j=1}^n {\frac{w_j }{l}\sum _{l=1}^{\# h_i } {\frac{\left| {\delta _1^{\sigma (j)} -\delta _2^{\sigma (j)} } \right| }{2t+1}} } \end{aligned}$$
(17)

If \(\lambda =1\), then the generalized ordered weighted distance becomes the ordered weighted Euclidean distance between \(\tilde{A}\) and \(\tilde{B}\):

$$\begin{aligned} d_{owed} (\tilde{A},\tilde{B})=\left( {\sum _{j=1}^n {w_j \left( {\frac{1}{l}\sum _{l=1}^{\# b} {\left( {\frac{\left| {\delta _1^{\sigma (j)} -\delta _2^{\sigma (j)} } \right| }{2t+1}} \right) } ^{2}} \right) } } \right) ^{1/2} \end{aligned}$$
(18)

To take the distance between each alternative \(Y_i \) and the hesitant fuzzy linguistic positive ideal solution \(x^{+}\), and the distance between each alternative \(Y_i \) and the hesitant fuzzy linguistic negative ideal solution \(x^{-}\) into consideration simultaneously, Liao et al.’s defined the definition below:

A satisfaction degree of a given alternative \(Y_i \) over the criteria \(G_j (j=1,2,\cdots ,n)\) is defined as:

$$\begin{aligned} \eta (Y_i )=\frac{(1-\theta )d(Y_i ,x_i^- )}{\theta d(Y_i ,x_i^+ )+(1-\theta )d(Y_i ,x_i^- )} \end{aligned}$$
(19)

where the parameter \(\theta \) denotes the risk preferences of the decision maker: \(\theta >0.5\) means that the decision maker is pessimists; while \(\theta <0.5\) means the opposite. The value of the parameter \(\theta \) is provided by the decision maker in advance. The higher the satisfaction degree, the better the alternative is.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xu, A., Merigó, J.M. et al. Hesitant fuzzy linguistic ordered weighted distance operators for group decision making. J. Appl. Math. Comput. 49, 285–308 (2015). https://doi.org/10.1007/s12190-014-0839-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-014-0839-5

Keywords

Mathematics Subject Classification

Navigation