Skip to main content
Log in

A universal envelope for Gaussian processes and their kernels

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The central theme in our paper deals with mathematical issues involved in the answer to the following question: How can we generate stochastic processes from their correlation data? Since Gaussian processes are determined by moment information up to order two, we focus on the Gaussian case. Two functional analytic tools are used here, in more than one variant. They are: operator factorization; and direct integral decompositions in the form of Karhunen-Loève expansions. We define and study a new interplay between the theory of positive definition functions, and their reproducing kernels, on the one hand, and Gaussian stochastic processes, on the other. The three classes of processes we study are as follows: Processes associated with: (a) arbitrarily given sigma finite regular measures on a fixed Borel measure space; (b) with Hilbert spaces of sigma-functions; and (c) with systems of self-similar measures arising in the theory of iterated function systems. Starting with a non-degenerate positive definite function K on some fixed set S, we show that there is a choice of a universal sample space Ω, which can be realized as a “boundary” of (S,K). Its boundary-theoretic properties are analyzed, and we point out their relevance to the study of electrical networks on countable infinite graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Al-Homidan, S., Alshahrani, M.: Positive definite Hankel matrices using Cholesky factorization. Comput. Methods Appl. Math. 9(3), 221–225 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Albeverio, S., Yoshida, M.W.: Hida distribution construction of non-Gaussian reflection positive generalized random fields. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12(1), 21–49 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Albeverio, S., Laĭons, T., Rozanov, Yu.: Boundary conditions for stochastic evolution equations with an extremely chaotic source. Mat. Sb. 186(12), 3–20 (1995)

    MathSciNet  Google Scholar 

  4. Albeverio, S., Belopolskaya, Ya.I., Feller, M.N.: Boundary problems for the wave equation with the Lévy Laplacian in Shilov’s class. Methods Funct. Anal. Topol. 16(3), 197–202 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Albeverio, S., Ayupov, Sh.A., Kudaybergenov, K.K., Nurjanov, B.O.: Local derivations on algebras of measurable operators. Commun. Contemp. Math. 13(4), 643–657 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Albeverio, S., Jorgensen, P.E.T., Paolucci, A.M.: On fractional Brownian motion and wavelets. Complex Anal. Oper. Theory 6(1), 33–63 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alpay, D., Levanony, D.: On the reproducing kernel Hilbert spaces associated with the fractional and bi-fractional Brownian motions. Potential Anal. 28(2), 163–184 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Alpay, D., Attia, H., Levanony, D.: On the characteristics of a class of Gaussian processes within the white noise space setting. Stoch. Process. Appl. 120(7), 1074–1104 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Alpay, D., Jorgensen, P., Levanony, D.: A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 261(2), 507–541 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Arcozzi, N., Rochberg, R., Sawyer, E., Wick, B.D.: Distance functions for reproducing kernel Hilbert spaces. In: Function Spaces in Modern Analysis. Contemp. Math., vol. 547, pp. 25–53. Am. Math. Soc., Providence (2011)

    Chapter  Google Scholar 

  11. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  12. Arveson, W.: Markov operators and OS-positive processes. J. Funct. Anal. 66(2), 173–234 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Arveson, W.: Noncommutative Dynamics and E-Semigroups. Springer Monographs in Mathematics. Springer, New York (2003)

    Book  Google Scholar 

  14. Arveson, W.: The noncommutative Choquet boundary III: operator systems in matrix algebras. Math. Scand. 106(2), 196–210 (2010)

    MATH  MathSciNet  Google Scholar 

  15. Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics., vol. 16. World Scientific, River Edge (2000)

    MATH  Google Scholar 

  16. Beardon, A.F.: Iteration of Rational Functions. Graduate Texts in Mathematics, vol. 132. Springer, New York (1991) (Complex analytic dynamical systems)

    Book  MATH  Google Scholar 

  17. Bhattacharya, P.K., Smith, R.P.: Sequential probability ratio test for the mean value function of a Gaussian process. Ann. Math. Stat. 43, 1861–1873 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  18. Blei, R.: Analysis in Integer and Fractional Dimensions. Cambridge Studies in Advanced Mathematics, vol. 71. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  19. Dasgupta, S., Hsu, D.: On-line estimation with the multivariate Gaussian distribution. In: Learning Theory. Lecture Notes in Comput. Sci., vol. 4539, pp. 278–292. Springer, Berlin (2007)

    Chapter  Google Scholar 

  20. Dudley, R.M.: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. In: Selected Works of R.M. Dudley. Sel. Works Probab. Stat., pp. 125–165. Springer, New York (2010)

    Chapter  Google Scholar 

  21. Dutkay, D.E., Jorgensen, P.E.T.: Hilbert spaces of martingales supporting certain substitution-dynamical systems. Conform. Geom. Dyn. 9, 24–45 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  22. Erraoui, M., Essaky, E.H.: Canonical representation for Gaussian processes. In: Séminaire de Probabilités XLII. Lecture Notes in Math., vol. 1979, pp. 365–381. Springer, Berlin (2009)

    Chapter  Google Scholar 

  23. Fuglede, B.: On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gross, L.: Potential theory on Hilbert space. J. Funct. Anal. 1, 123–181 (1967)

    Article  MATH  Google Scholar 

  25. Hida, T.: Brownian Motion. Applications of Mathematics, vol. 11. Springer, New York (1980) (translated from Japanese by the author and T.P. Speed)

    Book  MATH  Google Scholar 

  26. Hida, T.: A frontier of white noise analysis, in line with Itô calculus. In: Stochastic Analysis and Related Topics in Kyoto. Adv. Stud. Pure Math., vol. 41, pp. 111–119. Math. Soc. Japan, Tokyo (2004)

    Google Scholar 

  27. Hida, T., Si, S.: Lectures on White Noise Functionals. World Scientific, Hackensack (2008)

    Book  MATH  Google Scholar 

  28. Hida, T., Kuo, H.-H., Obata, N.: Transformations for white noise functionals. J. Funct. Anal. 111(2), 259–277 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jaffe, A., Ritter, G.: Reflection positivity and monotonicity. J. Math. Phys. 49(5), 052301 (2008)

    Article  MathSciNet  Google Scholar 

  30. Jorgensen, P.E.T.: Iterated function systems, representations, and Hilbert space. Int. J. Math. 15(8), 813–832 (2004)

    Article  MATH  Google Scholar 

  31. Jorgensen, P.E.T.: Analysis and Probability: Wavelets, Signals, Fractals. Graduate Texts in Mathematics, vol. 234. Springer, New York (2006)

    Google Scholar 

  32. Jorgensen, P.E.T., Kribs, D.W.: Wavelet representations and Fock space on positive matrices. J. Funct. Anal. 197(2), 526–559 (2003)

    Article  MathSciNet  Google Scholar 

  33. Jorgensen, P.E.T., Ólafsson, G.: Unitary representations of Lie groups with reflection symmetry. J. Funct. Anal. 158(1), 26–88 (1998)

    Article  MathSciNet  Google Scholar 

  34. Jorgensen, P.E.T., Ólafsson, G.: Unitary representations and Osterwalder-Schrader duality. In: The Mathematical Legacy of Harish-Chandra, Baltimore, 1998. Proc. Sympos. Pure Math., vol. 68, pp. 333–401. Am. Math. Soc., Providence (2000)

    Chapter  Google Scholar 

  35. Jorgensen, P.E.T., Pearse, E.P.: Spectral reciprocity and matrix representations of unbounded operators. J. Funct. Anal. 261(3), 749–776 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kakutani, S.: On equivalence of infinite product measures. Ann. Math. (2) 49, 214–224 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kuo, F.Y., Woźniakowski, H.: Gauss-Hermite quadratures for functions from Hilbert spaces with Gaussian reproducing kernels. BIT Numer. Math. 52(2), 425–436 (2012)

    Article  MATH  Google Scholar 

  38. Lukić, M.N.: Integrated Gaussian processes and their reproducing kernel Hilbert spaces. In: Stochastic Processes and Functional Analysis. Lecture Notes in Pure and Appl. Math., vol. 238, pp. 241–263. Dekker, New York (2004)

    Google Scholar 

  39. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995) (Fractals and rectifiability)

    Book  MATH  Google Scholar 

  40. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  41. Parthasarathy, K.R., Schmidt, K.: Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory. Lecture Notes in Math., vol. 272. Springer, Berlin (1972)

    MATH  Google Scholar 

  42. Shale, D., Stinespring, F.W.: Wiener processes. II. J. Funct. Anal. 5, 334–353 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  43. Shen, G., Chen, C.: Stochastic integration with respect to the sub-fractional Brownian motion with \(H\in(0,\frac{1}{2})\). Stat. Probab. Lett. 82(2), 240–251 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Smale, S., Zhou, D.-X.: Shannon sampling and function reconstruction from point values. Bull. Am. Math. Soc. (N.S.) 41(3), 279–305 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  45. von Neumann, J.: On infinite direct products. Compos. Math. 6, 1–77 (1939)

    Google Scholar 

  46. Ye, G.-B., Zhou, D.-X.: Learning and approximation by Gaussians on Riemannian manifolds. Adv. Comput. Math. 29(3), 291–310 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palle E. T. Jørgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, P.E.T. A universal envelope for Gaussian processes and their kernels. J. Appl. Math. Comput. 44, 1–38 (2014). https://doi.org/10.1007/s12190-013-0678-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-013-0678-9

Keywords

Mathematics Subject Classification (2000)

Navigation