Skip to main content
Log in

Almost automorphy profile of solutions for difference equations of Volterra type

  • Applied mathematics
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This work deals with the almost automorphic profile of solutions of the nonlinear Volterra difference equation \(u(n+1) = \lambda\sum_{j=-\infty}^{n}a(n-j)u(j) + f(n,u(n))\), n∈ℤ, for λ in a distinguished subset of the complex plane, where a(n) is a complex summable sequence and the perturbation f is a non-Lipschitz nonlinearity. Many illustrating remarks and examples are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This seems reasonable and necessary since the uniform continuity condition is the main condition needed for the composition theorems of almost periodic functions, asymptotically almost periodic functions and pseudo-almost periodic functions (see [2, 32]).

  2. The convex hull of a set K is the set of all convex combinations of point in K: co(K):={θ 1 x 1+⋯+θ k x k :x i K, θ i ≥0, i=1,…,k; θ 1+⋯+θ k =1}. As the name suggests, the convex hull co(K) is always convex. It is the smallest convex set that contain K.

References

  1. Agarwal, R.P.: Difference Equations and Inequalities. Monographs and Textbooks in Pure and Applied Mathematics, vol. 155. Dekker, New York (1992)

    MATH  Google Scholar 

  2. Agarwal, R.P., de Andrade, B., Cuevas, C.: Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Anal., Real World Appl. 11(5), 3532–3554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agarwal, R.P., Cuevas, C., Frasson, M.: Semilinear functional difference equations with infinite delay. Math. Comput. Model. 55(3–4), 1083–1105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allouche, J.-P., Bacher, R.: Toeplitz sequences, paperfolding, towers of Hanoi and progression-free sequences of integers. Enseign. Math. (2) 38(3–4), 315–327 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Araya, D., Castro, R., Lizama, C.: Almost automorphic solutions of difference equations. Adv. Differ. Equ. 2009, 591380 (2009)

    Article  MathSciNet  Google Scholar 

  6. Arrieta, J.M., Carvalho, A.N.: Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations. Trans. Am. Math. Soc. 352(1), 285–310 (1999)

    Article  MathSciNet  Google Scholar 

  7. Bochner, S.: Uniform convergence of monotone sequences of functions. Proc. Natl. Acad. Sci. USA 47, 582–585 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bochner, S., Von Neumann, J.: On compact solutions of operational-differential equations. I. Ann. Math. (2) 36(1), 255–291 (1935)

    Article  Google Scholar 

  9. Cardoso, F., Cuevas, C.: Exponential dichotomy and boundedness for retarded functional difference equations. J. Differ. Equ. Appl. 15(3), 261–290 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, A., Cuevas, C.: Perturbation theory, stability, boundedness and asymptotic behavior for second order evolution in discrete time. J. Differ. Equ. Appl. 17(3), 327–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corduneanu, C.: Almost periodicity in functional equations, differential equations, chaos and variational problems. Prog. Nonlinear Differ. Equ. Appl. 75, 157–163 (2008)

    Article  MathSciNet  Google Scholar 

  12. Cuevas, C., de Souza, J.C.: A perturbation theory for the discrete harmonic oscillator equation. J. Differ. Equ. Appl. 16(12), 1413–1428 (2010)

    Article  MATH  Google Scholar 

  13. Cuevas, C., Lizama, C.: Semilinear evolution equations of second order via maximal regularity. Adv. Differ. Equ. 2008, 316207 (2008)

    Article  MathSciNet  Google Scholar 

  14. Cuevas, C., Lizama, C.: Almost automorphic solutions to integral equations on the line. Semigroup Forum 79(3), 461–472 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cuevas, C., Lizama, C.: Semilinear evolution equations on discrete time and maximal regularity. J. Math. Anal. Appl. 361(1), 234–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cuevas, C., Pinto, M.: Convergent solutions of linear functional difference equations in phase space. J. Math. Anal. Appl. 277(1), 324–341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cuevas, C., Henríquez, H.R., Lizama, C.: On the existence of almost automorphic solutions of Volterra difference equations. J. Differ. Equ. Appl. (2011). doi:10.1080/10236198.2011.603311

    Google Scholar 

  18. De Andrade, B., Cuevas, C., Henríquez, E.: Asymptotic periodicity and almost automorphy for a class of Volterra integro-differential equations. Math. Methods Appl. Sci. (2012). doi:10.1002/mma.1607

    Google Scholar 

  19. Diagana, T., N’Guérékata, G., Minh, N.V.: Almost automorphic solutions of evolution equations. Proc. Am. Math. Soc. 132(11), 3289–3298 (2004)

    Article  MATH  Google Scholar 

  20. Elaydi, S.: An Introduction to Difference Equations, 3rd edn. Undergraduate Texts in Mathematics. Springer, New York (2005)

    MATH  Google Scholar 

  21. Fink, A.M.: Almost Differential Equations. Lecture Notes in Mathematics, vol. 377. Springer, Berlin (1974)

    MATH  Google Scholar 

  22. Gjerde, R., Johansen, O.: Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows. Ergod. Theory Dyn. Syst. 20(6), 1687–1710 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goldstein, J.A., N’Guérékata, G.M.: Almost automorphic solutions of semilinear evolution equations. Proc. Am. Math. Soc. 133(8), 2401–2408 (2005)

    Article  MATH  Google Scholar 

  24. Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  25. Halanay, A.: Solutions périodiques et presque-périodiques des systèmes d’équations aux différences finies. Arch. Ration. Mech. Anal. 12, 134–149 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  26. Henríquez, H., Cuevas, C.: Almost automorphy for abstract neutral differential equation via control theory. Ann. Mat. Pura Appl. (2011). doi:10.1007/s10231-011-0229-7

    Google Scholar 

  27. Istrăţescu, V.I.: Fixed Point Theory, An Introduction. Mathematics and Its Applications, vol. 7. Reidel, Dordrecht (1981)

    Book  MATH  Google Scholar 

  28. Kolmanovskii, V., Shaikhet, L.: Some conditions for boundedness of solutions of difference Volterra equations. Appl. Math. Lett. 16(6), 857–862 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kolmanovskii, V.B., Myshkis, A.D.: Stability in the first approximation of some Volterra difference equations. J. Differ. Equ. Appl. 3(5–6), 563–569 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Kolmanovskii, V.B., Myshkis, A.D., Richard, J.-P.: Estimate of solutions for some Volterra difference equations. Nonlinear Anal. 40(1–8), 345–363 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kolmanovskii, V.B., Castellanos-Velasco, E., Torres-Muñoz, J.A.: A survey: stability and boundedness of Volterra difference equations. Nonlinear Anal. 53(7–8), 861–928 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, H.-X., Huang, F.-L., Li, J.-Y.: Composition of pseudo almost-periodic functions and semilinear differential equations. J. Math. Anal. Appl. 255(2), 436–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, J.-h., Song, X.-q.: Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations. J. Funct. Anal. 258(1), 196–207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Minh, N.V., Naito, T., N’Guérékata, G.: A spectral countability condition for almost automorphy of solutions of differential equations. Proc. Am. Math. Soc. 134(11), 3257–3266 (2006)

    Article  MATH  Google Scholar 

  35. N’Guérékata, G.M.: Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Kluwer Academic/Plenum, New York (2001)

    Book  MATH  Google Scholar 

  36. N’Guérékata, G.M.: Topics in Almost Automorphy. Springer, New York (2005)

    MATH  Google Scholar 

  37. Song, Y.: Almost periodic solutions of discrete Volterra equations. J. Math. Anal. Appl. 314(1), 174–194 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Song, Y.: Periodic and almost periodic solutions of functional difference equations with finite delay. Adv. Differ. Equ. 2007, 68023 (2007)

    Google Scholar 

  39. Song, Y.: Asymptotically almost periodic solutions of nonlinear Volterra difference equations with unbounded delay. J. Differ. Equ. Appl. 14(9), 971–986 (2008)

    Article  MATH  Google Scholar 

  40. Song, Y.: Positive almost periodic solutions of nonlinear discrete systems with finite delay. Comput. Math. Appl. 58(1), 128–134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song, Y., Tian, H.: Periodic and almost periodic solutions of nonlinear discrete Volterra equations with unbounded delay. J. Comput. Appl. Math. 205(2), 859–870 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Veech, W.A.: Almost automorphic functions. Proc. Natl. Acad. Sci. USA 49, 462–464 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. Walther, A.: Fastperiodische Folgen und ihre Fouriersche Analysis. Alti Congresso Inst. Mat. Bologna 2, 289–298 (1928)

    Google Scholar 

  44. Walther, A.: Fastperiodische Folgen und Potenzreihen mit fastperiodischen Koeffizienten. Abh. Math. Sem. Hamburg Univ. 6, 217–234 (1928)

    Article  MATH  Google Scholar 

  45. Yi, Y.: On almost automorphic oscillations. In: Differences and Differential Equations. Fields Institute Communications, vol. 42, pp. 75–99. Am. Math. Soc., Providence (2004)

    Google Scholar 

  46. Zaidman, S.: Almost automorphic solutions of some abstract evolution equations. Rend. - Ist. Lomb., Accad. Sci. Lett. A 110(2), 578–588 (1976)

    MathSciNet  Google Scholar 

  47. Zaidman, S.: Behavior of trajectories of C 0-semigroups. Rend. - Ist. Lomb., Accad. Sci. Lett. A 114, 205–208 (1980–1982).

    MathSciNet  Google Scholar 

  48. Zaidman, S.: Topics in abstract differential equations. Nonlinear Anal. 23(7), 849–870 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zaidman, S.: Topics in Abstract Differential Equations. II. Pitman Research Notes in Mathematics, vol. 321. Longman Scientific & Technical, Harlow (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

The results in this work were partially obtained during a visit (July-September 2012) of the second author to the Department of Mathematics and Statistics of Universidad de La Frontera under Programa Atracción e Inserción (PAI-MEC) Grant 80112008 (CONICYT-CHILE). He is grateful to professor Herme Soto and the Department of Mathematics and Statistics, for its generous hospitality and providing a stimulating atmosphere to work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cuevas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, R.P., Cuevas, C. & Dantas, F. Almost automorphy profile of solutions for difference equations of Volterra type. J. Appl. Math. Comput. 42, 1–18 (2013). https://doi.org/10.1007/s12190-012-0615-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-012-0615-3

Keywords

Mathematics Subject Classification (2010)

Navigation