Skip to main content
Log in

Mean-square exponential stability of stochastic theta methods for nonlinear stochastic delay integro-differential equations

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper deals with the mean-square exponential stability of stochastic theta methods for nonlinear stochastic delay integro-differential equations. It is shown that the stochastic theta methods inherit the mean-square exponential stability property of the underlying system. Moreover, the backward Euler method is mean-square exponentially stable with less restrictions on the step size. In addition, numerical experiments are presented to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beretta, E., Kolmanovskii, V.B., Shaikhet, L.: Stability of epidemic model with time delays influenced by stochastic perturbations. Math. Comput. Simul. 45, 269–277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang, M., Youree, R.K.: The European option with hereditary price structures: Basic theory. Appl. Math. Comput. 102, 279–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hobson, D.G., Rogers, L.C.G.: Complete models with stochastic volatility. Math. Finance 8, 27–48 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33, 2254–2267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Higham, D.J.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38, 753–769 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Higham, D.J., Mao, X., Stuart, A.M.: Exponential mean-square stability of numerical solutions to stochastic differential equations. LMS J. Comput. Math. 6, 297–313 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Rodkina, A., Schurz, H.: Almost sure asymptotic stability of drift-implicit θ-methods for bilinear ordinary stochastic differential equations in ℝ1. J. Comput. Appl. Math. 180, 13–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  9. Milstein, G.N., Tretyakov, M.V.: Numerical Integration of Stochastic Differential Equations. Kluwer, Dordrecht (1995)

    Google Scholar 

  10. Baker, C.T.H., Buckwar, E.: Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations. J. Comput. Appl. Math. 184, 404–427 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, M., Cao, W., Fan, Z.: Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation. J. Comput. Appl. Math. 170, 255–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, Z., Zhang, C.: An analysis of stability of Milstein method for stochastic differential equations with delay. Comput. Math. Appl. 51, 1445–1452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, H., Gan, S., Hu, L.: The split-step backward Euler method for linear stochastic delay differential equations. J. Comput. Appl. Math. 225, 558–568 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wu, F., Mao, X., Szpruch, L.: Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numer. Math. 115, 681–697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koto, T.: Stability of θ-method for delay integro-differential equations. J. Comput. Appl. Math. 161, 393–404 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, C., Vandewalle, S.: Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. IMA J. Numer. Anal. 24, 193–214 (2004)

    Article  MathSciNet  Google Scholar 

  17. Ding, X., Wu, K., Liu, M.: Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations. Int. J. Comput. Math. 83, 753–763 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rathinasamy, A., Balachandran, K.: Mean-square stability of Milstein method for linear hybrid stochastic delay integro-differential equations. Nonlinear Anal. Hybrid Syst. 2, 1256–1263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, F., Shen, Y., Hu, J.: Stability of the split-step backward Euler scheme for stochastic delay integro-differential equations with Markovian switching. Commun. Nonlinear Sci. Numer. Simul. 16, 814–821 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Buckwar, E.: The Theta-Maruyama scheme for stochastic functional differential equations with distributed memory term. Monte Carlo Methods Appl. 10, 235–244 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Mao, X.: Exponential Stability of Stochastic Differential Equations. Dekker, New York (1994)

    MATH  Google Scholar 

  22. Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  23. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Gan, S. Mean-square exponential stability of stochastic theta methods for nonlinear stochastic delay integro-differential equations. J. Appl. Math. Comput. 39, 69–87 (2012). https://doi.org/10.1007/s12190-011-0510-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-011-0510-3

Keywords

Mathematics Subject Classification (2000)

Navigation