Skip to main content
Log in

Influences of migrations from local competitive pressures on populations between patches

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A mathematical model of two competitive populations with migrations between two patches is proposed, which incorporates the dispersals produced by local competitive pressures. It is shown that the density-dependent migrations enhance the persistence of the two competitive populations. Compared with constant migrations, the dispersals from local competitive pressures induce dramatic changes of dynamical behavior of the model. First, the model admits a transition from one stable positive equilibrium to bistable positive equilibria. Second, the model exhibits bifurcations with the existence of seven positive steady states, in which two stable positive equilibria coexist with two stable boundary equilibrium points. These changes alter the distribution of the two populations in the two patches and increase their survival possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdllaoui, A.E., Auger, P., Kooi, B.W., de la Parra, R.B., Mchich, R.: Effects of density-dependent migrations on stability of a two-patch predator-prey model. Math. Biosci. 210, 335 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amarasekare, P.: The role of density-dependent dispersal in source-sink dynamics. J. Theor. Biol. 226, 159 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bowler, D.E., Benton, T.G.: Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205 (2005)

    Article  Google Scholar 

  4. Cosner, C., Lou, Y.: Does movement toward better environments always benefit a population. J. Math. Anal. Appl. 277, 489 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cressman, R., Krivan, V.: Migration dynamics for the ideal free distribution. Am. Nat. 168, 384 (2006)

    Article  Google Scholar 

  6. de Roos, A.M., Leonardsson, K., Persson, L., Mittelbach, G.G.: Ontogenetic niche shifts and flexible behavior in size-structured populations. Ecol. Monogr. 72, 271 (2002)

    Article  Google Scholar 

  7. Hauzy, C., Hulot, F.D., Gins, A., Loreau, M.: Intra- and interspecific density-dependent dispersal in an aquatic prey-predator system. J. Anim. Ecol. 76, 552 (2007)

    Article  Google Scholar 

  8. Kishitomo, K.: Coexistence of any number of species in the Lotka-Volterra competitive system over two-patches. Theor. Popul. Biol. 38, 149 (1990)

    Article  Google Scholar 

  9. Levin, S.A.: Dispersion and population interactions. Am. Nat. 108, 207 (1974)

    Article  Google Scholar 

  10. Lou, Y.: Some challenging mathematical problems in evolution of dispersal and population dynamics. In: Friedman, A. (ed.) Tutorials in Mathematical Biosciences. Evolution and Ecology, vol. IV. Springer, Berlin (2008)

    Google Scholar 

  11. Matthysen, E.: Density dependent dispersal in birds and mammals. Ecography 28, 403 (2005)

    Article  Google Scholar 

  12. Mchich, R., Auger, P., Poggiale, J.C.: Effect of predator density dependent dispersal of prey on stability of a predator-prey system. Math. Biosci. 206, 343 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Münkemüller, T., Johst, K.: Compensatory versus over-compensatory density regulation: Implications for metapopulation persistence in dynamic landscapes. Ecol. Model. 197, 171 (2006)

    Article  Google Scholar 

  14. Persson, L., de Roos, A.M.: Adaptive habitat use in size-structured populations: linking individual behavior to population processes. Ecology 84, 1129 (2003)

    Article  Google Scholar 

  15. Saether, B.E., Engen, S., Lande, R.: Finite metapopulation models with density-dependent migration and stochastic local dynamics. Proc. R. Soc. Lond. Ser. B 266, 113 (1999)

    Article  Google Scholar 

  16. Smith, H.L.: Monotone Dynamical Systems. American Mathematical Society Press, Providence (1995)

    MATH  Google Scholar 

  17. Takeuchi, Y.: Diffusion-mediated persistence in two-species competition Lotka-Volterra model. Math. Biosci. 95, 65 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Takeuchi, Y., Lu, Z.: Permanence and global stability for competitive Lotka-Volterra diffusion systems. Nonlinear Anal. 24, 91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thieme, H.R.: Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J. Math. Anal. 24, 407 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Travis, J.M.J., Murrell, D.J., Dytham, C.: The evolution of density-dependent dispersal. Proc. R. Soc. Lond. B 266, 1837 (1999)

    Article  Google Scholar 

  21. Wang, W., Takeuchi, Y.: Adaptation of prey and predators between patches. J. Theor. Biol. 258, 603 (2009)

    Article  Google Scholar 

  22. Wang, W., Zhao, X.: An epidemic model in a patchy environment. Math. Biosci. 190, 97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, W., Zhao, X.: An age-structured epidemic model in a patchy environment. SIAM J. Appl. Math. 65, 1597 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, W., Zhao, X.: An epidemic model with population dispersal and infection period. SIAM J. Appl. Math. 66, 1454 (2005)

    Article  Google Scholar 

  25. Wang, W., Fergola, P., Tenneriello, C.: Innovation diffusion model in patch environment. Appl. Math. Comput. 134, 51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, D., Feng, Z., Allen, L.J.S., Swihart, R.K.: A spatially structured metapopulation model with patch dynamics. J. Theor. Biol. 239, 469 (2006)

    Article  MathSciNet  Google Scholar 

  27. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendi Wang.

Additional information

Supported by the National Natural Science Foundation of China (10871162), the Key Project of Chinese Ministry of Education (No. 109132) and Technology Innovation Fund of Postgraduates of Southwest University (KY2009012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wang, W. Influences of migrations from local competitive pressures on populations between patches. J. Appl. Math. Comput. 37, 313–330 (2011). https://doi.org/10.1007/s12190-010-0436-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-010-0436-1

Keywords

Mathematics Subject Classification (2000)

Navigation