Skip to main content
Log in

Existence of solutions for fractional differential equations of order q∈(2,3] with anti-periodic boundary conditions

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of solutions for an anti-periodic boundary value problem of fractional differential equations of order q∈(2,3]. The contraction mapping principle and Krasnoselskii’s fixed point theorem are applied to establish the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, B., Nieto, J.J.: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. (2009). Art. ID 708576, pages 11. doi:10.1155/2009/708576

    MathSciNet  Google Scholar 

  2. Ahmad, B., Nieto, J.J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. (2009, to appear)

  3. Ahmad, B., Otero-Espinar, V.: Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions. Bound. Value Probl. (2009) Art. ID 625347, pages 11. doi:10.1155/2009/625347

    MathSciNet  Google Scholar 

  4. Ahmad, B., Nieto, J.J.: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 69, 3291–3298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ahmad, B.: Existence of solutions for second order nonlinear impulsive boundary value problems. Electron. J. Differ. Equ. 68, 1–7 (2009)

    Google Scholar 

  6. Chang, Y.-K., Nieto, J.J.: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 49, 605–609 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, Y., Nieto, J.J., O’Regan, D.: Antiperiodic solutions for fully nonlinear first-order differential equations. Math. Comput. Model. 46, 1183–1190 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Daftardar-Gejji, V., Bhalekar, S.: Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 345, 754–765 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gafiychuk, V., Datsko, B., Meleshko, V.: Mathematical modeling of time fractional reaction-diffusion systems. J. Comput. Appl. Math. 220, 215–225 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  12. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal. 69, 2677–2682 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lakshmikantham, V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lakshmikantham, V., Vatsala, A.S.: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21, 828–834 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Academic, Cambridge (2009)

    MATH  Google Scholar 

  16. Lim, S.C., Li, M., Teo, L.P.: Langevin equation with two fractional orders. Phys. Lett. A 372, 6309–6320 (2008)

    Article  MathSciNet  Google Scholar 

  17. N’Guerekata, G.M.: A Cauchy problem for some fractional abstract differential equation with non local conditions. Nonlinear Anal. 70, 1873-1876 (2009)

    Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  19. Rida, S.Z., El-Sherbiny, H.M., Arafa, A.A.M.: On the solution of the fractional nonlinear Schrödinger equation. Phys. Lett. A 372, 553–558 (2008)

    Article  MathSciNet  Google Scholar 

  20. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  21. Smart, D.R.: Fixed Point Theorems. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  22. Vasundhara Devi, J., Lakshmikantham, V.: Nonsmooth analysis and fractional differential equations. Nonlinear Anal. 70, 4151–4157 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, B. Existence of solutions for fractional differential equations of order q∈(2,3] with anti-periodic boundary conditions. J. Appl. Math. Comput. 34, 385–391 (2010). https://doi.org/10.1007/s12190-009-0328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-009-0328-4

Keywords

Mathematics Subject Classification (2000)

Navigation