Skip to main content
Log in

Abstract

An immersed surface M in N n×ℝ is a helix if its tangent planes make constant angle with t . We prove that a minimal helix surface M, of arbitrary codimension is flat. If the codimension is one, it is totally geodesic. If the sectional curvature of N is positive, a minimal helix surfaces in N n×ℝ is not necessarily totally geodesic. When the sectional curvature of N is nonpositive, then M is totally geodesic. In particular, minimal helix surfaces in Euclidean n-space are planes. We also investigate the case when M has parallel mean curvature vector: A complete helix surface with parallel mean curvature vector in Euclidean n-space is a plane or a cylinder of revolution. Finally, we use Eikonal f functions to construct locally any helix surface. In particular every minimal one can be constructed taking f with zero Hessian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, B.Y.: On the surface with parallel mean curvature vector. Indiana Univ. Math. J. 2, 655–666 (1973)

    Article  Google Scholar 

  2. Di Scala, A., Ruiz-Hernández, G.: Helix submanifolds of Euclidean space. Monatshefte Math. 157, 205–215 (2009)

    Article  MATH  Google Scholar 

  3. Di Scala, A., Ruiz-Hernández, G.: Higher codimensional Euclidean helix submanifolds. Kodai Math. J. 33, 192–210 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dillen, F., Munteanu, M.I.: Constant angle surfaces in ℍ2×ℝ. Bull. Braz. Math. Soc. 40(1), 85–97 (2009); MR2496114

    Article  MathSciNet  MATH  Google Scholar 

  5. Dillen, F., Fastenakels, J., Van der Veken, J., Vrancken, L.: Constant angle surfaces in \(\mathbb{S}^{2}\times \mathbb{R}\). Monatshefte Math. 152(2), 89–96 (2007); MR2346426

    Article  MATH  Google Scholar 

  6. Enomoto, K.: Flat surfaces with mean curvature vector of constant length in Euclidean spaces. Proc. Am. Math. Soc. 110, 211–215 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Espinar, J.M., Rosenberg, H.: Complete constant mean curvature surfaces and Bernstein type theorems in \(\mathbb{M}^{2}\times \mathbb{R}\). J. Differ. Geom. 82(3), 611–628 (2009). MR2534989

    MathSciNet  MATH  Google Scholar 

  8. Espinar, J.M., Rosenberg, H.: Complete constant mean curvature surfaces in homogeneous spaces. arxiv:0903.2439v1

  9. Fischer, A.E.: Riemannian maps between Riemannian manifolds. Contemp. Math. 132, 331–366 (1992)

    Google Scholar 

  10. Hoffman, D.A., Osserman, R., Schoen, R.: On the Gauss map of complete surfaces of constant mean curvature in ℝ3 and ℝ4. Comment. Math. Helv. 57, 519–531 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Montaldo, S., Onnis, I.I.: A note on surfaces on ℍ2×ℝ. Boll. Unione Mat. Ital. 8, 939–950 (2007)

    MathSciNet  Google Scholar 

  12. Ruiz-Hernández, G.: Helix, shadow boundary and minimal submanifolds. Ill. J. Math. 52(4), 1385–1397 (2008)

    MATH  Google Scholar 

  13. Tondeur, P.: Foliations on Riemannian Manifolds. Universitext. Springer, Berlin (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Ruiz-Hernández.

Additional information

Communicated by V. Cortés.

The author was supported by Conacyt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Hernández, G. Minimal helix surfaces in N n×ℝ. Abh. Math. Semin. Univ. Hambg. 81, 55–67 (2011). https://doi.org/10.1007/s12188-011-0052-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-011-0052-5

Keywords

Mathematics Subject Classification

Navigation