Skip to main content
Log in

Abstract

Hadamard’s gamma function is defined by

$$H(x)=\frac{1}{\Gamma(1-x)}\frac{d}{dx}\log \frac{\Gamma(1/2-x/2)}{\Gamma(1-x/2)},$$

where Γ denotes the classical gamma function of Euler. H is an entire function, which satisfies H(n)=(n−1)! for all positive integers n. We prove the following superadditive property.

Let α be a real number. The inequality

$$H(x)+H(y)\leq H(x+y)$$

holds for all real numbers x,y with x,yα if and only if αα 0=1.5031…. Here, α 0 is the only solution of H(2t)=2H(t) in [1.5,∞).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)

    Google Scholar 

  2. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alzer, H.: A power mean inequality for the gamma function. Monatsh. Math. 131, 179–188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alzer, H.: Mean-value inequalities for the polygamma functions. Aequ. Math. 61, 151–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alzer, H., Ruscheweyh, S.: A subadditive property of the gamma function. J. Math. Anal. Appl. 285, 564–577 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis, P.J.: Leonhard Euler’s integral: a historical profile of the gamma function. Am. Math. Mon. 66, 849–869 (1959)

    Article  MATH  Google Scholar 

  7. Gautschi, W.: The incomplete gamma function since Tricomi. In: Tricomi’s Ideas and Contemporary Applied Mathematics, Atti Convegni Lincei, vol. 147, pp. 203–237. Accad. Naz. Lincei, Rome (1998)

    Google Scholar 

  8. Luschny, P.: Is the gamma function misdefined? Or: Hadamard versus Euler—who found the better gamma function? http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunction.html

  9. Mijajlović, Ž., Malešević, B.: Differentially transcendental functions. arXiv:math.GM/0412354 v3, 9 Feb 2006

  10. Newton, T.A.: Derivation of a factorial function by method of analogy. Am. Math. Mon. 68, 917–920 (1961)

    Article  Google Scholar 

  11. Sándor, J.: A bibliography on gamma functions: inequalities and applications. http://www.math.ubbcluj.ro/~jsandor/letolt/art42.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Alzer.

Additional information

Communicated by O. Riemenschneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alzer, H. A superadditive property of Hadamard’s gamma function. Abh. Math. Semin. Univ. Hambg. 79, 11–23 (2009). https://doi.org/10.1007/s12188-008-0009-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-008-0009-5

Keywords

Mathematics Subject Classification (2000)

Navigation