Skip to main content

Advertisement

Log in

Unresolved issues in allogeneic hematopoietic cell transplantation for non-malignant diseases

  • Progress in Hematology
  • Current status and future perspectives of allogeneic hematopoietic cell transplantation for non-malignant diseases
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Allogeneic hematopoietic cell transplantation (HCT) can be curative for a variety of non-malignant diseases (NMDs) as well as hematological malignancies. However, there are several fundamental differences between HCT for NMDs and hematological malignancies, which may necessitate the use of alternative HCT strategies. For example, these diseases differ in the intensity of conditioning regimen sufficient to improve disease. In addition, patients with NMDs are at higher risk of graft failure or mixed chimerism following HCT, and gain no or little survival benefit from graft-versus-host disease. Because more than 80% of patients with NMDs become long-term survivors, greater attention has been paid to late adverse effects and decreased of quality of life after HCT. This review addresses several unresolved issues in allogeneic HCT for patients with NMDs, such as (1) stem cell source, (2) conditioning regimen, (3) use of serotherapy or low-dose irradiation, and (4) therapeutic intervention for mixed chimerism. Resolving these issues may improve transplant outcomes in patients with NMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jacobsohn DA, Duerst R, Tse W, Kletzel M. Reduced intensity haemopoietic stem-cell transplantation for treatment of non-malignant diseases in children. Lancet. 2004;364:156–62.

    Article  PubMed  Google Scholar 

  2. Lankester AC, Albert MH, Booth C, et al. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant. 2021;56:2052–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marsh RA, Vaughn G, Kim MO, Li D, Jodele S, Joshi S, et al. Reduced-intensity conditioning significantly improves survival of patients with hemophagocytic lymphohistiocytosis undergoing allogeneic hematopoietic cell transplantation. Blood. 2010;116:5824–31.

    Article  CAS  PubMed  Google Scholar 

  4. Chiesa R, Veys P. Reduced-intensity conditioning for allogeneic stem cell transplant in primary immune deficiencies. Expert Rev Clin Immunol. 2012;8:255–66.

    Article  CAS  PubMed  Google Scholar 

  5. Kato S, Yabe H, Takakura H, et al. Hematopoietic stem cell transplantation for inborn errors of metabolism: a report from the research committee on transplantation for inborn errors of metabolism of the Japanese ministry of health, labour, and welfare and the working group of the japan society for hematopoietic cell transplantation. Pediatr Transplant. 2016;20:203–14.

    Article  PubMed  Google Scholar 

  6. DeFilipp Z, Hefazi M, Chen YB, Blazar BR. Emerging approaches to improve allogeneic hematopoietic cell transplantation outcomes for non-malignant diseases. Blood. https://doi.org/10.1182/blood.2020009014.

    Article  Google Scholar 

  7. Umeda K, Imai K, Yanagimachi M, et al. Impact of graft-versus-host disease on the clinical outcome of allogeneic hematopoietic stem cell transplantation for non-malignant diseases. Int J Hematol. 2020;111:869–76.

    Article  CAS  PubMed  Google Scholar 

  8. Umeda K, Yabe H, Kato K, et al. Impact of low-dose irradiation and in vivo T-cell depletion in hematopoietic stem cell transplantation against non-malignant diseases using a fludarabine combination reduced-intensity conditioning. Bone Marrow Transplant. 2019;54:1227–36.

    Article  CAS  PubMed  Google Scholar 

  9. Oshrine BR, Olson TS, Bunin N. Mixed chimerism and graft loss in pediatric recipients of an alemtuzumab-based reduced-intensity conditioning regimen for non-malignant disease. Pediatr Blood Cancer. 2014;61:1852–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kato M, Kurata M, Kanda J, Kato K, Tomizawa KK, et al. Impact of graft-versus-host disease on relapse and survival after allogeneic stem cell transplantation for pediatric leukemia. Bone Marrow Transplant. 2019;54:68–75.

    Article  PubMed  Google Scholar 

  11. Zaucha-Prażmo A, Sadurska E, Pieczonka A, et al. Risk factors for transplant outcomes in children and adolescents with non-malignant diseases following allogeneic hematopoietic stem cell transplantation. Ann Transplant. 2019;24:374–82.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gabelli M, Veys P, Chiesa R. Current status of umbilical cord blood transplantation in children. Br J Haematol. 2020;190:650–83.

    Article  PubMed  Google Scholar 

  13. Rafii H, Garneir F, Ruggeri A, et al. Umbilical cord blood transplants facilitated by the French cord blood banks network. On behalf of the Agency of Biomedicine, Eurocord and the French society of bone marrow transplant and cell therapy (SFGM-TC). Bone Marrow Transplant. 2021;56:2497–509.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miyamoto S, Umeda K, Kurata M, et al. Hematopoietic cell transplantation for severe combined immunodeficiency patients: a Japanese retrospective study. J Clin Immunol. 2021;41:1865–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kato K, Yabe H, Shimozawa N, et al. Stem cell transplantation for pediatric patients with adrenoleukodystrophy: a nationwide retrospective analysis in Japan. Pediatr Transplant. 2022;26: e14125.

    Article  CAS  PubMed  Google Scholar 

  16. Ciurea SO, Al Malki MM, Kongtim P, et al. The European society for blood and marrow transplantation (EBMT) consensus recommendations for donor selection in haploidentical hematopoietic cell transplantation. Bone Marrow Transplant. 2020;55:12–24.

    Article  CAS  PubMed  Google Scholar 

  17. Cytryn S, Abdul-Hay M. Haploidentical hematopoietic stem cell transplantation followed by “post-cyclophosphamide”: The future of allogeneic stem cell transplant. Clin Hematol Int. 2020;2:49058.

    Article  Google Scholar 

  18. Neven B, Diana JS, Castelle M, et al. Haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide for primary immunodeficiencies and inherited disorders in children. Biol Blood Marrow Transplant. 2019;25:1363–73.

    Article  PubMed  Google Scholar 

  19. Fernandes JF, Nichele S, Arcuri LJ, et al. Outcomes after haploidentical stem cell transplantation with post-transplantation cyclophosphamide in patients with primary immunodeficiency diseases. Biol Blood Marrow Transplant. 2020;26:1923–9.

    Article  CAS  PubMed  Google Scholar 

  20. Osumi T, Yoshimura S, Sako M. Prospective study of allogeneic hematopoietic stem cell transplantation with post-transplantation cyclophosphamide and antithymocyte globulin from HLA-mismatched related donors for nonmalignant diseases. Biol Blood Marrow Transplant. 2020;26:e286–91.

    Article  CAS  PubMed  Google Scholar 

  21. Sahasrabudhe K, Otto M, Hematti P, et al. TCR αβ+/CD19+ cell depletion in haploidentical hematopoietic allogeneic stem cell transplantation: a review of current data. Leuk Lymphoma. 2019;60:598–609.

    Article  CAS  PubMed  Google Scholar 

  22. Shar RM, Elfeky R, Nademi Z, et al. T-cell receptor αβ+ and CD19+ cell-depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency. J Allergy Clin Immunol. 2018;141:1417–26.

    Article  CAS  Google Scholar 

  23. Merli P, Pagliara D, Galaverna F, et al. TCRαβ/CD19 depleted HSCT from an HLA-haploidentical relative to treat children with different nonmalignant disorders. Blood Adv. 2022;6(1):281–92. https://doi.org/10.1182/bloodadvances.2021005628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Migeon BR. X-linked diseases: susceptible females. Genet Med. 2020;22:1156–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Engelen M, Barbier M, Dijkstra IM, et al. X-linked adenoleukodystrophy in women: a cross-sectional cohort study. Brain. 2014;137:693–706.

    Article  PubMed  Google Scholar 

  26. Miller WP, Rothman SM, Nascene D, et al. Outcomes after allogeneic hematopoietic cell transplantation for childhood cerebral adenoleukodystrophy: the largest single-institution cohort report. Blood. 2011;118:1971–8.

    Article  CAS  PubMed  Google Scholar 

  27. Berger J, Forss-Petter S, Eichler FS. Pathophysiology of X-linked adenoleukodystrophy. Biochimie. 2014;98:135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muraoka K, Ishii E, Ihara K, et al. Successful bone marrow transplantation in a patient with c-mpl-mutated congenita amegakaryocytic thrombocytopenia from a carrier donor. Pediatr Transplant. 2005;9:101–3.

    Article  PubMed  Google Scholar 

  29. Wu L, Peng Z, Lu S, et al. β-thalassemia caused by compound heterozygous mutations and cured by bone marrow transplantation: a case report. Mol Med Rep. 2017;16:6522–7.

    Google Scholar 

  30. Valayannopoulos V, de Blic J, Mahlaoui N, et al. Laronidase for cardiopulmonary disease in Hurler syndrome 12 years after bone marrow transplantation. Pediatrics. 2010;126:e1242–7.

    Article  PubMed  Google Scholar 

  31. de Latour RP, Peters C, Gibson B, et al. Recommendations on hematopoietic stem cell transplantation for inherited bone marrow failure syndromes. Bone Marrow Transplant. 2015;50:1168–72.

    Article  Google Scholar 

  32. Socié G, Salooja N, Cohen A, et al. Nonmalignant late effects after allogeneic stem cell transplantation. Blood. 2003;101:3373–85.

    Article  PubMed  CAS  Google Scholar 

  33. Rizzo JD, Curtis RE, Socié G, et al. Solid cancers after allogeneic hematopoietic cell transplantation. Blood. 2009;113:1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gupta A, Downey M, Shanley R, et al. Reduced-toxicity (BuFlu) conditioning is better tolerated but has a higer second transplantation rate compared to myeloablative conditioning (BuCy) in children with inherited metabolic disorders. Biol Blood Marrow Transplant. 2020;26:486–92.

    Article  CAS  PubMed  Google Scholar 

  35. Shenoy S, Angelucci E, Arnold SD, et al. Current results and future research priorities in late effects after hematopoietic stem cell transplantation for children with sickle cell disease and thalassemia: a consensus statement from the second pediatric blood and marrow transplant consortium international conference on late effects after pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23:552–61.

    Article  PubMed  Google Scholar 

  36. Burroughs LM, Petrovic A, Brazauskas R, et al. Excellent outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome: a PIDTC report. Blood. 2020;135:2094–105.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bartelink IH, Lalmohamed A, van Reji EML, et al. Association of busulfan exposure with survival and toxicity after haematopoietic cell transplantation in children and young adults: a multicentre, retrospective cohort analysis. Lancet Haematol. 2016;3:e525–36.

    Article  Google Scholar 

  38. Nishimura A, Aoki Y, Ishiwata Y, et al. Hematopoietic cell transplantation with reduced intensity conditioning using fludarabine/busulfan or fludarabine/melphalan for primary immunodeficiency diseases. J Clin Immunol. 2021;41:944–57.

    Article  CAS  PubMed  Google Scholar 

  39. Marsh RA, Hebert K, Kim S, et al. Comparison of hematopoietic cell transplant conditioning regimens for hemophagocytic lymphohistiocytosis disorders. J Allergy Clin Immunol. 2022;149(3):1097–104.e2. https://doi.org/10.1016/j.jaci.2021.07.031.

    Article  CAS  PubMed  Google Scholar 

  40. Panasiuk A, Nussey S, Veys P, et al. Gonadal function and fertility after stem cell transplantation in childhood: comparison of a reduced intensity conditioning regimen containing melphalan with a myeloablative regimen containing busulfan. Br J Haematol. 2015;170:719–26.

    Article  CAS  PubMed  Google Scholar 

  41. Ritchie DS, Seymour JF, Roberts AW, et al. Acute left ventricular failure following melphalan and fludarabine conditioning. Bone marrow Transplant. 2001;28:101–3.

    Article  CAS  PubMed  Google Scholar 

  42. Danylesko I, Shimoni A, Nagler A. Treosulfan-based conditioning before hematopoietic SCT: more than a BU look-alike. Bone Marrow Transplant. 2012;47:5–14.

    Article  CAS  PubMed  Google Scholar 

  43. Faraci M, Diesch T, Labopin M, et al. Gonadal function after busulfan compared with treosulfan in children and adolescents undergoing allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2019;25:1786–91.

    Article  CAS  PubMed  Google Scholar 

  44. Gerystoke B, Bonanomi S, Carr TF, et al. Treosulfan-containing regimens achieve high rates of engraftment associated with low transplant morbidity and mortality in children with non-malignant disease and significant co-morbidities. Br J Haematol. 2008;142:257–62.

    Article  CAS  Google Scholar 

  45. Slatter MA, Rao K, Amrolia P, et al. Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood. 2011;117:4367–75.

    Article  CAS  PubMed  Google Scholar 

  46. Arai Y, Jo T, Matsui H, et al. Efficacy of antithymocyte globulin for allogeneic hematopoietic cell transplantation: a systematic review and meta-analysis. Leuk Lymphoma. 2017;58:1840–8.

    Article  CAS  PubMed  Google Scholar 

  47. Admiraal R, van Kesteren C, Jol-van der Zijde CM, et al. Association between anti-thymocyte globulin exposure and CD4+ immune reconstitution in paediatric haemopoietic cell transplantation: a multicenter, retrospective phamacodynamic cohort analysis. Lancet Haematol. 2015;2:e194–203.

    Article  PubMed  Google Scholar 

  48. Marsh RA, Lane A, Mehta PA, et al. Alemtuzumab levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following alemtuzumab, fludarabine, and melphalan RIC HCT. Blood. 2016;127:503–12.

    Article  CAS  PubMed  Google Scholar 

  49. Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Monogr Inst. 2005;34:12–7.

    Article  CAS  Google Scholar 

  50. Walace WHB, Thomson AB, Saran F, et al. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Rad Oncol Biol Phys. 2005;62:738–44.

    Article  Google Scholar 

  51. Björgvinsdóttir B, Ding C, Pech N, Gifford MA, Li LL, Dinauer MC. Retroviral-mediated gene transfer of gp91 phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood. 1997;89:41–8.

    Article  PubMed  Google Scholar 

  52. Sokolic RA, Bauer TR, Gu YC, et al. Nonmyeloablative conditioning with busulfan before matched littermate bone marrow transplantation results in reversal of the disease phenotype in canine leukocyte adhesion deficiency. Biol Blood Marrow Transplant. 2005;11:755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas C, Le Deist F, Cavazzana-Calvo M, et al. Results of allogeneic bone marrow transplantation in patients with leukocyte adhesion deficiency. Blood. 1995;86:1629–35.

    Article  CAS  PubMed  Google Scholar 

  54. Moratto D, Giliani S, Bonfim C, et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980–2009: an international collaborative study. Blood. 2011;118:1675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hartz B, Marsh R, Rao K, et al. The minimum required level of donor chimerism in hereditary hemophagocytic lymphohistiocytosis. Blood. 2016;127:3281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boelens JJ, Aldenhoven M, Purtill D, et al. Outcomes of transplantation using various hematopoietic cell sources in children with Hurler syndrome after myeloablative conditioning. Blood. 2013;121:3981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Orchard PJ, Nascene DR, Miller WP, et al. Successful donor engraftment and repair of the blood-brain barrier in cerebral adenoleukodystrophy. Blood. 2019;133:1378–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ayas M, Siddiqui K, Al-Jefri A, et al. Dose mixed chimerism after allogeneic hematopoietic cell transplantation in pediatric patients with Fanconi anemia impact on outcome? Transplant Cell Ther. 2021;27:257e1–6.

    Article  CAS  Google Scholar 

  59. Magnani A, Pondarré C, Bouazza N, et al. Extensive multilineage analysis in patients with mixed chimerism after allogeneic transplantation for sickle cell disease: insight into hematopoiesis and engraftment thresholds for gene therapy. Haematologica. 2020;105:1240–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fouzia NA, Edison ES, Lakhmi KM, et al. Long-term outcome of mixed chimerism after stem cell transplantation for thalassemia major conditioned with busulfan and cyclophosphamide. Bone Marrow Transplant. 2018;53:169–74.

    Article  CAS  PubMed  Google Scholar 

  61. Umeda K, Adachi S, Tanaka S, et al. Comparison of second transplantation and donor lymphocyte infusion for donor mixed chimerism after allogeneic stem cell transplantation for nonmalignant diseases. Pediatr Blood Cancer. 2016;63:2221–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsutsugu Umeda.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umeda, K. Unresolved issues in allogeneic hematopoietic cell transplantation for non-malignant diseases. Int J Hematol 116, 41–47 (2022). https://doi.org/10.1007/s12185-022-03361-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03361-5

Keywords

Navigation