Skip to main content

Advertisement

Log in

Transgenic expression of a canonical Wnt inhibitor, kallistatin, is associated with decreased circulating CD19+ B lymphocytes in the peripheral blood

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Members of the family of serine proteinase inhibitors, such as kallistatin, have been shown to inhibit canonical Wnt-TCF/LEF-β-catenin signaling via their interactions with the Wnt co-receptor LRP6. Yet the effects of transgenic overexpression of anti-Wnt serpins on hematopoiesis and lymphopoiesis are not well known. We studied the effects of human kallistatin (SERPINA4) on Wnt reporter activity in various cell types throughout the hematopoietic system and associated impacts on circulating white blood cell profiles. Transgenic overexpression of kallistatin suppressed Wnt-TCF/LEF-β-catenin signaling in bone marrow, as demonstrated using a Wnt reporter mouse. Further, kallistatin overexpression and treatment were associated with reduced Wnt-TCF/LEF-β-catenin activity in CD34+ c-kit+ bone marrow cells and CD19+ B lymphocytes, with reduced levels of these populations in bone marrow and peripheral circulation, respectively. The presence of CD3+CD4+, CD3+CD8+, and CD3 NK1.1+ T lymphocytes were not significantly affected. Our data suggest that overexpression of kallistatin interferes with lymphopoiesis, ultimately impacting the level of circulating CD19+ B lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu X, Zhang B, McBride JD, Zhou K, Lee K, Zhou Y, et al. Antiangiogenic and antineuroinflammatory effects of kallistatin through interactions with the canonical Wnt pathway. Diabetes. 2013;62(12):4228–38. doi:10.2337/db12-1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park K, Lee K, Zhang B, Zhou T, He X, Gao G, et al. Identification of a novel inhibitor of the canonical Wnt pathway. Mol Cell Biol. 2011;31(14):3038–51. doi:10.1128/MCB.01211-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang B, Abreu JG, Zhou K, Chen Y, Hu Y, Zhou T, et al. Blocking the Wnt pathway, a unifying mechanism for an angiogenic inhibitor in the serine proteinase inhibitor family. Proc Natl Acad Sci USA. 2010;107(15):6900–5. doi:10.1073/pnas.0906764107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McBride J, Jenkins A, Liu X, Zhang B, Lee K, Berry WL, et al. Elevated circulation levels of an anti-angiogenic SERPIN in patients with diabetic microvascular complications impairs wound healing through suppression of Wnt signaling. J Invest Dermatol. 2014;. doi:10.1038/jid.2014.40.

    PubMed  PubMed Central  Google Scholar 

  5. Staal FJ, Clevers HC. WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol. 2005;5(1):21–30. doi:10.1038/nri1529.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson G, Jenkinson EJ. Lymphostromal interactions in thymic development and function. Nat Rev Immunol. 2001;1(1):31–40. doi:10.1038/35095500.

    Article  CAS  PubMed  Google Scholar 

  7. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50. doi:10.1038/nature03319.

    Article  CAS  PubMed  Google Scholar 

  8. Staal FJ, Clevers HC. Wnt signaling in the thymus. Curr Opin Immunol. 2003;15(2):204–8.

    Article  CAS  PubMed  Google Scholar 

  9. van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev. 2003;13(1):28–33.

    Article  PubMed  Google Scholar 

  10. van de Wetering M, de Lau W, Clevers H. WNT signaling and lymphocyte development. Cell. 2002;109(Suppl):S13–9.

    Article  PubMed  Google Scholar 

  11. Weerkamp F, Baert MR, Naber BA, Koster EE, de Haas EF, Atkuri KR, et al. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci USA. 2006;103(9):3322–6. doi:10.1073/pnas.0511299103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rattis FM, Voermans C, Reya T. Wnt signaling in the stem cell niche. Curr Opin Hematol. 2004;11(2):88–94.

    Article  CAS  PubMed  Google Scholar 

  13. Nemeth MJ, Bodine DM. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Res. 2007;17(9):746–58. doi:10.1038/cr.2007.69.

    Article  CAS  PubMed  Google Scholar 

  14. Timm A, Grosschedl R. Wnt signaling in lymphopoiesis. Curr Top Microbiol Immunol. 2005;290:225–52.

    CAS  PubMed  Google Scholar 

  15. Qiang YW, Rudikoff S. Wnt signaling in B and T lymphocytes. Front Biosci J Virtual Libr. 2004;9:1000–10.

    Article  CAS  Google Scholar 

  16. Staal FJ, Sen JM. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol. 2008;38(7):1788–94. doi:10.1002/eji.200738118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steinke FC, Yu S, Zhou X, He B, Yang W, Zhou B, et al. TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4(+) T cell fate and interact with Runx3 to silence Cd4 in CD8(+) T cells. Nat Immunol. 2014;15(7):646–56. doi:10.1038/ni.2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R, Jones SN. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell. 2003;4(5):349–60.

    Article  CAS  PubMed  Google Scholar 

  19. Staal FJ, Luis TC. Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem. 2010;109(5):844–9. doi:10.1002/jcb.22467.

    CAS  PubMed  Google Scholar 

  20. Staal FJ, Meeldijk J, Moerer P, Jay P, van de Weerdt BC, Vainio S, et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol. 2001;31(1):285–93. doi:10.1002/1521-4141(200101)31:1<285:AID-IMMU285>3.0.CO;2-D.

    Article  CAS  PubMed  Google Scholar 

  21. Griffin CT, Curtis CD, Davis RB, Muthukumar V, Magnuson T. The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels. Proc Natl Acad Sci USA. 2011;108(6):2282–7. doi:10.1073/pnas.1013751108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jenkins AJ, McBride JD, Januszewski AS, Karschimkus CS, Zhang B, O’Neal DN, et al. Increased serum kallistatin levels in type 1 diabetes patients with vascular complications. J Angiogenesis Res. 2010;2:19. doi:10.1186/2040-2384-2-19.

    Article  Google Scholar 

  23. Malhotra S, Kincade PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell. 2009;4(1):27–36. doi:10.1016/j.stem.2008.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim X, Nusse R. Wnt signaling in skin development, homeostasis, and disease. Cold Spring Harb Perspect Biol. 2013;. doi:10.1101/cshperspect.a008029.

    Google Scholar 

  25. Fuerer C, Nusse R, Ten Berge D. Wnt signalling in development and disease. Max Delbruck Center for Molecular Medicine meeting on Wnt signaling in Development and Disease. EMBO Rep. 2008;9(2):134–8. doi:10.1038/sj.embor.7401159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nusse R. Wnt signaling in disease and in development. Cell Res. 2005;15(1):28–32. doi:10.1038/sj.cr.7290260.

    Article  CAS  PubMed  Google Scholar 

  27. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810. doi:10.1146/annurev.cellbio.20.010403.113126.

    Article  CAS  PubMed  Google Scholar 

  28. Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol. 2008;8(8):581–93. doi:10.1038/nri2360.

    Article  CAS  PubMed  Google Scholar 

  29. Habib SJ, Chen BC, Tsai FC, Anastassiadis K, Meyer T, Betzig E, et al. A localized Wnt signal orients asymmetric stem cell division in vitro. Science. 2013;339(6126):1445–8. doi:10.1126/science.1231077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. 2008;2(3):274–83. doi:10.1016/j.stem.2008.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reya T, O’Riordan M, Okamura R, Devaney E, Willert K, Nusse R, et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity. 2000;13(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  32. Gattinoni L, Ji Y, Restifo NP. Wnt/beta-catenin signaling in T-cell immunity and cancer immunotherapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(19):4695–701. doi:10.1158/1078-0432.CCR-10-0356.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xing Ma.

Ethics declarations

Funding information

This study was supported by NIH Grants EY012231, EY018659, EY019309 and GM104934 and a Grant from Oklahoma Center for the Advancement of Science and Technology (OCAST), HR13-076.

Conflict of interest

Authors have no conflict of interests to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12185_2017_2205_MOESM1_ESM.tiff

Supplemental Figure S1. No differences in c-myc and ThPOK expression among T lymphocytes of WT and KS-TG mice. (A) c-myc expression as quantified by real time qPCR in CD3+CD4+ and CD3+CD8+ T lymphocytes from WT and KS-TG mice (triplicate). (B) ThPOK gene expression in CD3+CD4+ cells from WT and KS-TG mice (triplicate). Gapdh was used as housekeeping gene for normalization; ns = not significant (TIFF 651 kb)

12185_2017_2205_MOESM2_ESM.tiff

Supplemental Figure S2. Total peripheral blood cells collected from various populations among WT and KS-TG mice. (A) total leukocytes. (B) total lymphocytes. (C) total CD19+ cells. (D) total CD3+ cells. (E) total CD3+CD4+ cells. (F) total CD3+CD8+ cells. N = 5/group. **p < 0.01. ns = not significant (TIFF 1321 kb)

12185_2017_2205_MOESM3_ESM.tiff

Supplemental Figure S3. Gross and histologic appearance of fixed lymph nodes from WT and KS-TG mice. (A) WT and KS-TG mice lymph nodes, from left to right, columns represent WT male, WT female, KS-TG male, and KS-TG female (n = 5/group shown). (B) sizes of lymph nodes dissected from cervical region in each group (n = 5/group). (C-D) representative H&E sections of lymph nodes from WT and KS-TG mice, as labeled; (C) scale bar 500 um. (D) higher magnification, scale bar 100 um (TIFF 31526 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McBride, J.D., Liu, X., Berry, W.L. et al. Transgenic expression of a canonical Wnt inhibitor, kallistatin, is associated with decreased circulating CD19+ B lymphocytes in the peripheral blood. Int J Hematol 105, 748–757 (2017). https://doi.org/10.1007/s12185-017-2205-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-017-2205-5

Keywords

Navigation