Skip to main content
Log in

Causative genetic mutations for antithrombin deficiency and their clinical background among Japanese patients

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

We summarize causative genetic mutations for antithrombin (AT) deficiency and their clinical background in Japanese patients. A total of 19 mutations, including seven novel mutations, were identified. We also summarize clinical symptoms of thrombosis, age at onset, family history, and contributing factors for thrombosis, and review the use of prophylactic anticoagulation in pregnant women with heterozygous type II heparin binding site defects (HBS) AT deficiency. The prevalence of thrombosis in probands with type I AT deficiency (88%) was double that observed in those with type II AT deficiency (50%). The prevalence of thrombotic episodes among family members was also higher for type I AT deficiency subjects (82%) than for those with type II AT deficiency (0%). The most common contributing factor for thrombosis among women with type I AT deficiency was pregnancy. Forty-five percent of women with type I AT deficiency developed thrombotic events before the 20th week of gestation. In contrast, women with type II (HBS) AT deficiency appear to be at a lower risk of thrombosis during pregnancy. In conclusion, thrombotic risk varies among different subtypes. Risk assessments based on genetic/clinical backgrounds may contribute to appropriate diagnosis, treatment, and prophylaxis for patients with AT deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Perry DJ, Carrell RW. Molecular genetics of human antithrombin deficiency. Hum Mutat. 1996;7(1):7–22.

    Article  CAS  PubMed  Google Scholar 

  2. Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA. 1997;94(26):14683–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Olson ST, Bjork I, Bock SC. Identification of critical molecular interactions mediating heparin activation of antithrombin: implications for the design of improved heparin anticoagulants. Trends Cardiovasc Med. 2002;12(5):198–205.

    Article  CAS  PubMed  Google Scholar 

  4. Luxembourg B, Delev D, Geisen C, Spannagl M, Krause M, Miesbach W, et al. Molecular basis of antithrombin deficiency. Thromb Haemost. 2011;105(4):635–46.

    Article  CAS  PubMed  Google Scholar 

  5. Lane D, Kunz G, Olds RJ, Thein SL. Molecular genetics of antithrombin deficiency. Blood Rev. 1996;10(2):59–74.

    Article  CAS  PubMed  Google Scholar 

  6. Orlando C, Heylen O, Lissens W, Jochmans K. Antithrombin heparin binding site deficiency: a challenging diagnosis of a not so benign thrombophilia. Thromb Res. 2015;135(6):1179–85.

    Article  CAS  PubMed  Google Scholar 

  7. Merz M, Böhm-Weigert M, Braun S, Cooper PC, Fischer R, Hickey K, Steffan A, Kemkes-Matthes BKS. Clinical multicenter evaluation of a new FXa-based antithrombin assay. Int J Lab Hematol. 2011;33(5):498–506.

    CAS  PubMed  Google Scholar 

  8. Maruyama K, Morishita E, Karato M, Kadono T, Sekiya A, Goto Y, et al. Antithrombin deficiency in three Japanese families: one novel and two reported point mutations in the antithrombin gene. Thromb Res. 2013;132(2):e118–23.

    Article  CAS  PubMed  Google Scholar 

  9. Sekiya A, Morishita E, Karato M, Maruyama K, Shimogawara I, Omote M, et al. Two case reports of inherited antithrombin deficiency: a novel frameshift mutation and a large deletion including all seven exons detected using two methods. Int J Hematol. 2011;93(2):216–9.

    Article  PubMed  Google Scholar 

  10. Tomonari A, Iwahana H, Yoshimoto K, Shigekiyo T, Saito S, Itakura M. Two new nonsense mutations in type Ia antithrombin III deficiency at Leu 140 and Arg 197. Thromb Haemost. 1992;68(4):455–9.

    CAS  PubMed  Google Scholar 

  11. Miyata T, Sato Y, Ishikawa J, Okada H, Takeshita S, Sakata T, et al. Prevalence of genetic mutations in protein S, protein C and antithrombin genes in Japanese patients with deep vein thrombosis. Thromb Res. 2009;124(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  12. Tait RC, Walker ID, Perry DJ, Islam SI, Daly ME, McCall F, et al. Prevalence of antithrombin deficiency in the healthy population. Br J Haematol. 1994;87(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  13. Jochmans K, Lissens W, Yin T, Michiels JJ, van der Luit L, Peerlinck K, et al. Molecular basis for type 1 antithrombin deficiency: identification of two novel point mutations and evidence for a de novo splice site mutation. Blood. 1994;84(11):3742–8.

    CAS  PubMed  Google Scholar 

  14. Nakahara Y, Tsuji H, Nakagawa K, Masuda H, Kitamura H, Nishimura H, et al. Genetic analysis in Japanese kindreds of congenital type I antithrombin deficiency causing thrombosis. Thromb Haemost. 1997;77(4):616–9.

    CAS  PubMed  Google Scholar 

  15. Lane DA, Olds RJ, Boisclair M, Chowdhury V, Thein SL, Cooper DN, et al. Antithrombin III mutation database: first update. For the Thrombin and its Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1993;70(2):361–9.

    CAS  PubMed  Google Scholar 

  16. Pavlova A, El-Maarri O, Luxembourg B, Lindhoff-Last E, Kochhan L, Bruhn H-D, et al. Detection of heterozygous large deletions in the antithrombin gene using multiplex polymerase chain reaction and denatured high performance liquid chromatography. Haematologica. 2006;91(9):1264–7.

    CAS  PubMed  Google Scholar 

  17. Perry DJ, Carrell RW. CpG dinucleotides are “hotspots” for mutation in the antithrombin III gene. Twelve variants identified using the polymerase chain reaction. Mol Biol Med. 1989;6(3):239–43.

    CAS  PubMed  Google Scholar 

  18. Koide T, Odani S, Takahashi K, Ono T, Sakuragawa N. Antithrombin III Toyama: replacement of arginine-47 by cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc Natl Acad Sci USA. 1984;81(2):289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhakuni T, Sharma A, Rashid Q, Kapil C, Saxena R, Mahapatra M, et al. Antithrombin III deficiency in Indian patients with deep vein thrombosis: identification of first India based AT variants including a novel point mutation (T280A) that leads to aggregation. PLoS One. 2015;10(3):e0121889.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim H-J, Seo J-Y, Lee K-O, Bang S-H, Lee S-T, Ki C-S, et al. Distinct frequencies and mutation spectrums of genetic thrombophilia in Korea in comparison with other Asian countries both in patients with thromboembolism and in the general population. Haematologica. 2014;99(3):561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okajima K, Abe H, Maeda S, Motomura M, Tsujihata M, Nagataki S, et al. Antithrombin III Nagasaki (Ser116-Pro): a heterozygous variant with defective heparin binding associated with thrombosis. Blood. 1993;81(5):1300–5.

    CAS  PubMed  Google Scholar 

  22. Neki R, Miyata T, Fujita T, Kokame K, Fujita D, Isaka S, et al. Nonsynonymous mutations in three anticoagulant genes in Japanese patients with adverse pregnancy outcomes. Thromb Res. 2014;133(5):914–8.

    Article  CAS  PubMed  Google Scholar 

  23. Caspers M, Pavlova A, Driesen J, Harbrecht U, Klamroth R, Kadar J, et al. Deficiencies of antithrombin, protein C and protein S—practical experience in genetic analysis of a large patient cohort. Thromb Haemost. 2012;108(2):247–57.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng W, Tang L, Jian X-R, Li Y-Q, Guo T, Wang Q-Y, et al. Genetic analysis should be included in clinical practice when screening for antithrombin deficiency. Thromb Haemost. 2015;113(2):262–71.

    Article  PubMed  Google Scholar 

  25. Pavlova A, Geisen C, Spannagl M, Bergmann F, Krause M, Alesci S. Impact of the type of SERPINC1 mutation and subtype of antithrombin deficiency on the thrombotic phenotype in hereditary antithrombin deficiency. Thromb Haemost. 2014;111(2):249–57.

    PubMed  Google Scholar 

  26. Zotz RB, Gerhardt A, Scharf RE. Inherited thrombophilia and gestational venous thromboembolism. Best Pract Res Clin Haematol. 2003;16(2):243–59.

    Article  PubMed  Google Scholar 

  27. American College of Obstetricians and Gynecologists Women’s Health Care Physicians. ACOG Practice Bulletin No. 138: inherited thrombophilias in pregnancy. Obstet Gynecol. 2013;122(3):706–17.

    Article  Google Scholar 

  28. Bates SM, Greer IA, Middeldorp S, Veenstra DL, Prabulos AM, Vandvik PO, American College of Chest Physicians. VTE, thrombophilia, antithrombotic therapy, and pregnancy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2_suppl):e691S–736S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kimura R, Honda S, Kawasaki T, Tsuji H, Madoiwa S, Yoichi S, et al. Protein S-K196E mutation as a genetic risk factor for deep vein thrombosis. Blood. 2006;107(4):1737–8.

    Article  CAS  PubMed  Google Scholar 

  30. van Boven HH, Reitsma PH, Rosendaal FR, Bayston TA, Chowdhury V, Bauer KA, et al. Factor V Leiden (FV R506Q) in families with inherited antithrombin deficiency. Thromb Haemost. 1996;75(3):417–21.

    PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the following clinicians who introduced the patients to us: Masahiro Ashizawa (Saitama Medical Center, Jichi Medical University), Chikara Fujita (Suzu General Hospital), Hidenori Imai (Juntendo University Urayasu Hospital), Shinsaku Imashuku (Takasago Seibu Hospital), Jin Iwasawa (Tsuchiura Kyodo General Hospital), Kazuo Kawasaki (Jundu Eye Clinic), Taizou Kimura (Tsukuba University Hospital), Mami Kobukata (JA Oita Koseiren Tsurumi Hospital), Kei Murao (Kyushu Rosai Hospital), Mayumi Nagasawa (Kanazawa Medical University), Tsuyoshi Nakamaki (Showa University), Tomonori Nakazato (Yokohama Municipal Citizen’s Hospital), Wataru Omi (Kanazawa Medical Center), Narihide Shinoda (Shinko Memorial Hospital), Moeko Shinohara (Ishikawa Prefectural Central Hospital), Sawako Takeuchi (Aiiku Hospital), Kohji Tanakaya (Iwakuni Medical Center), Sachie Tsuzura (Chikamori Hospital), Yoshiyuki Wakugawa (Kyushu Medical Center), Kouhei Yamaguchi (Aomori Prefectural Central Hospital). We also appreciate clinical advice from Tomoe Hayashi (Kanazawa City Hospital) and Yasuko Kadohira (Kanazawa University). This work was supported in part by grants-in-aid from the Ministry of Health, Labor and Welfare of Japan [Grant Number 26070201], Japan Society for the Promotion of Science [Grant Numbers 15K19176, 25462818, and 15K08643], and Hokkoku Cancer Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eriko Morishita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekiya, A., Taniguchi, F., Yamaguchi, D. et al. Causative genetic mutations for antithrombin deficiency and their clinical background among Japanese patients. Int J Hematol 105, 287–294 (2017). https://doi.org/10.1007/s12185-016-2142-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2142-8

Keywords

Navigation