Skip to main content

Advertisement

Log in

Phase 2 trial of daily, oral epigallocatechin gallate in patients with light-chain amyloidosis

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Previous studies have suggested that an increase in mitochondrial reactive oxygen species may cause organ damage in patients with light-chain (AL) amyloidosis; however, this damage can be decreased by antioxidant-agent treatment. Epigallocatechin gallate (EGCG), the major natural catechin in green tea, has potent antioxidant activity. Because EGCG has recently been reported to have a favorable toxicity profile for treating amyloidosis, we sought to examine the clinical efficacy and toxicity of EGCG in patients with AL amyloidosis. Fifty-seven patients were randomly assigned to the EGCG and observation groups and observed for six months. There were no increases in grade 3–5 adverse events and EGCG therapy was well tolerated. Although a decrease in the urinary albumin level was found in the EGCG group in patients with obvious albuminuria after treatment initiation, its antioxidant activity may not be sufficient to clarify the potential effect of EGCG in patients with AL amyloidosis. Because some of the biological markers responsible for organ damage were well correlated to the level of antioxidant potential in patients’ plasma, the status of oxidative stress in the blood may indicate the extent of organ damage in clinical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. Cell. 2012;148:1188–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349:583–96.

    Article  CAS  PubMed  Google Scholar 

  3. Vrana JA, Gamez JD, Madden BJ, Theis JD, Bergen HR, Dogan A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood. 2009;114:4957–9.

    Article  CAS  PubMed  Google Scholar 

  4. Gertz MA, Lacy MQ, Dispenzieri A. Therapy for immunoglobulin light chain amyloidosis: the new and the old. Blood Rev. 2004;18:17–37.

    Article  PubMed  Google Scholar 

  5. Palladini G, Dispenzieri A, Gertz MA, Kumar S, Wechalekar A, Hawkins PN, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30:4541–9.

    Article  CAS  PubMed  Google Scholar 

  6. Perfetti V, Palladini G, Casarini S, Navazza V, Rognoni P, Obici L, et al. The repertoire of light chains causing predominant amyloid heart involvement and identification of a preferentially involved germline gene, IGLV1-44. Blood. 2012;119:144–50.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012;30:989–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Merlini G, Seldin DC. Gertz MA. Amyloidosis: pathogenesis and new therapeutic options. J Clin Oncol. 2011;29:1924–33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cibeira M, Sanchorawala V. Outcome of AL amyloidosis after high-dose melphalan and autologous stem cell transplantation: long-term results in a series of 421 patients. Blood. 2011;118:4346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanchorawala V. High dose melphalan and autologous peripheral blood stem cell transplantation in AL amyloidosis. Hematol Oncol Clin North Am. 2014;28:1131–44.

    Article  PubMed  Google Scholar 

  11. Gertz MA, Lacy MQ, Dispenzieri A, Hayman SR, Kumar SK, Dingli D, et al. Autologous stem cell transplant for immunoglobulin light chain amyloidosis: a status report. Leuk Lymphoma. 2010;51:2181–7.

    Article  PubMed  Google Scholar 

  12. Palladini G, Lavatelli F, Russo P, Perlini S, Perfetti V, Bosoni T, et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood. 2006;107:3854–8.

    Article  CAS  PubMed  Google Scholar 

  13. Gertz MA, Lacy MQ, Dispenzieri A, Ansell SM, Elliott MA, Gastineau DA, et al. Risk-adjusted manipulation of melphalan dose before stem cell transplantation in patients with amyloidosis is associated with a lower response rate. Bone Marrow Transplant. 2004;34:1025–31.

    Article  CAS  PubMed  Google Scholar 

  14. Gertz MA, Lacy MQ, Dispenzieri A, Kumar SK, Dingli D, Leung N, et al. Refinement in patient selection to reduce treatment-related mortality from autologous stem cell transplantation in amyloidosis. Bone Marrow Transplant. 2013;48:557–61.

    Article  CAS  PubMed  Google Scholar 

  15. Jaccard A, Moreau P, Leblond V, Leleu X, Benboubker L, Hermine O, et al. High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. N Engl J Med. 2007;357:1083–93.

    Article  CAS  PubMed  Google Scholar 

  16. Roig E, Almenar L, González-Vílchez F, Rábago G, Delgado J, Gómez-Bueno M, et al. Outcomes of heart transplantation for cardiac amyloidosis: subanalysis of the spanish registry for heart transplantation. Am J Transplant. 2009;9:1414–9.

    Article  CAS  PubMed  Google Scholar 

  17. Dey BR, Chung SS, Spitzer TR, Zheng H, Macgillivray TE, Seldin DC, et al. Cardiac transplantation followed by dose-intensive melphalan and autologous stem-cell transplantation for light chain amyloidosis and heart failure. Transplantation. 2010;90:905–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sattianayagam PT, Gibbs SD, Pinney JH, Wechalekar AD, Lachmann HJ, Whelan CJ, et al. Solid organ transplantation in AL amyloidosis. Am J Transplant. 2010;10:2124–31.

    Article  CAS  PubMed  Google Scholar 

  19. Wechalekar AD, Goodman HJ, Lachmann HJ, Offer M, Hawkins PN, Gillmore JD. Safety and efficacy of risk-adapted cyclophosphamide, thalidomide, and dexamethasone in systemic AL amyloidosis. Blood. 2007;109:457–64.

    Article  CAS  PubMed  Google Scholar 

  20. Reece D, Hegenbart U, Sanchorawala V, Merlini G, Palladini G, Bladé J, et al. Long-term follow-up from a phase 1/2 study of single-agent bortezomib in relapsed systemic AL amyloidosis. Blood. 2014;124:2498–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palladini G, Russo P, Foli A, Milani P, Lavatelli F, Obici L, et al. Salvage therapy with lenalidomide and dexamethasone in patients with advanced AL amyloidosis refractory to melphalan, bortezomib, and thalidomide. Ann Hematol. 2012;91:89–92.

    Article  CAS  PubMed  Google Scholar 

  22. Dispenzieri A, Buadi F, Laumann K, LaPlant B, Hayman SR, Kumar SK, et al. Activity of pomalidomide in patients with immunoglobulin light-chain amyloidosis. Blood. 2012;119:5397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richards DB, Cookson LM, Berges AC, Barton SV, Lane T, Ritter JM, et al. Therapeutic clearance of amyloid by antibodies to serum amyloid p component. N Engl J Med. 2015;373:1106–14.

    Article  CAS  PubMed  Google Scholar 

  24. Gertz MA, Landau H, Comenzo RL, Seldin D, Weiss B, Zonder J, et al. First-in-human phase I/II study of neod001 in patients with light chain amyloidosis and persistent organ dysfunction. J Clin Oncol. 2016;34:1097–103.

    Article  CAS  PubMed  Google Scholar 

  25. Palladini G, Milani P, Foli A, Obici L, Lavatelli F, Nuvolone M, et al. Oral melphalan and dexamethasone grants extended survival with minimal toxicity in AL amyloidosis: long-term results of a risk-adapted approach. Haematologica. 2014;99:743–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao R, Jain M, Teller P, Connors LH, Ngoy S, Skinner M, et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation. 2001;104:1594–7.

    CAS  PubMed  Google Scholar 

  27. Guan J, Mishra S, Falk RH, Liao R. Current perspectives on cardiac amyloidosis. Am J Physiol Heart Circ Physiol. 2012;302:544–52.

    Article  Google Scholar 

  28. Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005;112:2047–60.

    Article  PubMed  Google Scholar 

  29. Dubrey SW, Hawkins PN, Falk RH. Amyloid diseases of the heart: assessment, diagnosis, and referral. Heart. 2011;97:75–84.

    Article  CAS  PubMed  Google Scholar 

  30. McWilliams-Koeppen HP, Foster JS, Hackenbrack N, Ramirez-Alvarado M, Donohoe D, Williams A, et al. Light chain amyloid fibrils cause metabolic dysfunction in human cardiomyocytes. PLoS One. 2015;10:e0137716.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brenner DA, Jain M, Pimentel DR, Wang B, Connors LH, Skinner M, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004;94:1008–10.

    Article  CAS  PubMed  Google Scholar 

  32. Diomede L, Rognoni P, Lavatelli F, Romeo M, del Favero E, Cantù L, et al. A Caenorhabditis elegans-based assay recognizes immunoglobulin light chains causing heart amyloidosis. Blood. 2014;123:3543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guan J, Mishra S, Qiu Y, Shi J, Trudeau K, Las G, et al. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO Mol Med. 2014;6:1493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monis GF, Schultz C, Ren R, Eberhard J, Costello C, Connors L, et al. Role of endocytic inhibitory drugs on internalization of amyloidogenic light chains by cardiac fibroblasts. Am J Pathol. 2006;169:1939–52.

    Article  CAS  PubMed  Google Scholar 

  35. Shi J, Guan J, Jiang B, Brenner DA, Del Monte F, Ward JE, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci USA. 2010;107:4188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci. 2005;25:8807–14.

    Article  CAS  PubMed  Google Scholar 

  37. Miyata M, Sato T, Kugimiya M, Sho M, Nakamura T, Ikemizu S, et al. The crystal structure of the green tea polyphenol (-)-epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the thyroxine binding site. Biochemistry. 2010;49:6104–14.

    Article  CAS  PubMed  Google Scholar 

  38. Ehrnhoefer D, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008;15:558–66.

    Article  CAS  PubMed  Google Scholar 

  39. Nakajima H, Nishitsuji K, Kawashima H, Kuwabara K, Mikawa S, Uchimura K, et al. The polyphenol(-)-epigallocatechin-3-gallate prevents apoA-IIowa amyloidosis in vitro and protects human embryonic kidney 293 cells against amyloid cytotoxicity. Amyloid. 2016;23:17–25.

    Article  CAS  PubMed  Google Scholar 

  40. Hunstein W. Epigallocathechin-3-gallate in AL amyloidosis: a new therapeutic option? Blood. 2007;110:2216–7.

    Article  CAS  PubMed  Google Scholar 

  41. Mereles D, Wanker EE, Katus HA. Therapy effects of green tea in a patient with systemic light-chain amyloidosis. Clin Res Cardiol. 2008;97:341–4.

    Article  PubMed  Google Scholar 

  42. Mereles D, Buss SJ, Hardt SE, Hunstein W, Katus HA. Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clin Res Cardiol. 2010;99:483–90.

    Article  CAS  PubMed  Google Scholar 

  43. Gertz MA, Comenzo R, Falk RH, Fermand JP, Hazenberg BP, Hawkins PN, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am J Hematol. 2005;79:319–28.

    Article  PubMed  Google Scholar 

  44. Siqueiar-Fiho AG, Cunha CL, Siqueira-Filho AG, Cunha CL, Tajik AJ, Seward JB, Schattenberg TT, Giuliani ER. M-mode and two-dimensional echocardiographic features in cardiac amyloidosis. Circulation. 1981;63:188–96.

    Article  Google Scholar 

  45. Dubrey SW, Cha K, Anderson J, Chamarthi B, Reisinger J, Skinner M, et al. The clinical features of immunoglobulin light-chain (AL) amyloidosis with heart involvement. QJM. 1998;91:141–57.

    Article  CAS  PubMed  Google Scholar 

  46. Hongo M, Ikeda S. Echocardiographic assessment of the evolution of amyloid heart disease: a study with familial amyloid polyneuropathy. Circulation. 1986;73:249–56.

    Article  CAS  PubMed  Google Scholar 

  47. Klein A, Hatle LK. Comprehensive doppler assessment of right ventricular diastolic function in cardiac amyloidosis. J Am Coll Cardiol. 1990;15:99–108.

    Article  CAS  PubMed  Google Scholar 

  48. Klein AL, Hatle LK, Burstow DJ, Taliercio CP, Seward JB, Kyle RA, et al. Serial Doppler echocardiographic follow-up left ventricular diastolic function in cardiac amyloidosis. J Am Coll Cardiol. 1990;16:1135–41.

    Article  CAS  PubMed  Google Scholar 

  49. Bellavia D, Pellikka P. Evidence of impaired left ventricular systolic function by Doppler myocardial imaging in patients with systemic amyloidosis and no evidence of cardiac involvement by standard two-dimensional and Doppler echocardiography. Am J Cardiol. 2008;101:1039–45.

    Article  PubMed  Google Scholar 

  50. Koyama J, Ray-Sequin PA, Falk RH. Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation. 2003;107:2446–52.

    Article  PubMed  Google Scholar 

  51. Dispenzieri A, Gertz MA. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol. 2004;22:3751–7.

    Article  CAS  PubMed  Google Scholar 

  52. Palladini G, Hegenbart U, Kyle RA, Lacy MQ, Burritt MF, Therneau TM, et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood. 2014;124:2325–32.

    Article  CAS  PubMed  Google Scholar 

  53. Cornelli U, Terranova R, Luca S, Cornelli M, Alberti A. Bioavailability and antioxidant activity of some food supplements in men and women using the D-Roms test as a marker of oxidative stress. J Nutr. 2001;131:3208–11.

    CAS  PubMed  Google Scholar 

  54. Cesarone MR, Belcaro G, Carratelli M, Cornelli U, De Sanctis MT, Incandela L, et al. A simple test to monitor oxidative stress. Int Angiol. 1999;2:127–30.

    Google Scholar 

  55. Alberti A, Bolognini L, Macciantelli D, Caratelli M. The radical cation of N, N-diethyl-para-phenylenediamine: a possible indicator of oxidative stress in biological samples. Res Chem Intermed. 2000;26:253–67.

    Article  CAS  Google Scholar 

  56. Ishii T, Ohtake T, Okamoto K, Mochida Y, Ishioka K, Oka M, et al. Serum biological antioxidant potential predicts the prognosis of hemodialysis patients. Nephron Clin Pract. 2011;117:230–6.

    Article  Google Scholar 

  57. Unno T, Sagesaka YM, Kakuda T. Analysis of tea catechins in human plasma by high-performance liquid chromatography with solid-phase extraction. J Agric Food Chem. 2005;53:9885–9.

    Article  CAS  PubMed  Google Scholar 

  58. Nakagawa K, Nakayama K, Nakamura M, Sookwong P, Tsuduki T, Niino H, et al. Effects of co-administration of tea epigallocatechin-3-gallate (EGCG) and caffeine on absorption and metabolism of EGCG in humans. Biosci Biotechnol Biochem. 2009;73:2014–7.

    Article  CAS  PubMed  Google Scholar 

  59. Spacil Z, Novakova L, Solich P. Comparison of positive and negative ion detection of tea catechins using tandem mass spectrometry and ultra-high performance liquid chromatography. Food Chem. 2010;123:535–41.

    Article  CAS  Google Scholar 

  60. Yoshikawa T, Yamada H, Matsuda K, Nino H, Sagesaka YM, Kakuda T, et al. Effects of short-term consumption of a large amount of tea catechins on chromosomal damage, oxidative stress markers, serum lipid, folic acid, and total homocysteine levels: a randomized, double-blind, controlled study. Jpn J Clin Pharmacol Ther. 2012;43:9–16.

    Article  CAS  Google Scholar 

  61. Chow HH, Hakim IA, Vining DR, Crowell JA, Ranger-Moore J, Chew WM, et al. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of polyphenone in healthy individuals. Clin Cancer Res. 2005;11:4627–33.

    Article  CAS  PubMed  Google Scholar 

  62. Henning S, Niu Y, Liu Y, Lee NH, Hara Y, Thames GD, et al. Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals. J Nutr Biochem. 2005;16:610–6.

    Article  CAS  PubMed  Google Scholar 

  63. Shanafelt TD, Call TG, Zent CS, LaPlant B, Bowen DA, Roos M, et al. Phase I trial of daily oral polyphenon E in patients with asymptomatic rai stage 0 to II chronic lymphocytic leukemia. J Clin Oncol. 2009;27:3808–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shanafelt TD, Call TG, Zent CS, Leis JF, LaPlant B, Bowen DA, et al. Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer. 2013;119:363–70.

    Article  CAS  PubMed  Google Scholar 

  65. Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart. 2015;36:244–51.

    Article  Google Scholar 

  66. Banypersad SM, Sado DM, Flett AS, Gibbs SD, Pinney JH, Maestrini V, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2013;6:34–9.

    Article  PubMed  Google Scholar 

  67. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6:488–97.

    Article  PubMed  Google Scholar 

  68. Dingley S, Polyak E, Lightfoot R, Ostrovsky J, Rao M, Greco T, et al. Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans. Mitochondrion. 2010;10:125–36.

    Article  CAS  PubMed  Google Scholar 

  69. Shia J, Guana J, Jiang B, Brenner DA, Del Monte F, Ward JE, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a noncanonical p38α MAPK pathway. PNAS. 2010;107:4188–93.

    Article  Google Scholar 

  70. Guan J, Mishra S, Shi J, Plovie E, Qiu Y, Cao X, et al. Stanniocalcin1 is a key mediator of amyloidogenic light chain induced cardiotoxicity. Basic Res Cardiol. 2013;108:378.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mishra S, Guan J, Plovie E, Seldin DC, Connors LH, Merlini G, et al. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol. 2013;305:95–103.

    Article  Google Scholar 

  72. Shin J, Ward J, Collins PA, Dai M, Semigran HL, Semigran MJ, et al. Overexpression of human amyloidogenic light chains causes heart failure in embryonic zebrafish: a preliminary report. Amyloid. 2012;19:191–6.

    Article  CAS  PubMed  Google Scholar 

  73. Ward J, Ren R, Toraldo G, Soohoo P, Guan J, O’Hara C, et al. Doxycycline reduces fibril formation in a transgenic mouse model offal amyloidosis. Blood. 2011;118:6610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramirez-Alvarado M. Amyloid formation in light chain amyloidosis. Curr Top Med Chem. 2012;12:2523–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhavaraju M, Hansmann UHE. Effect of single point mutations in a form of systemic amyloidosis. Protein Sci. 2015;24:1451–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peterson FC, Baden EM, Owen BA, Volkman BF, Ramirez-Alvarado M, et al. A single mutation promotes amyloidogenicity through a highly promiscuous dimer interface. Structure. 2010;18:563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marin-Argany M, Lin Y, Misra P, Williams A, Wall JS, Howell KG, et al. Cell damage in light chain amyloidosis. J Biol Chem. 2016;291:19813–25.

    Article  CAS  PubMed  Google Scholar 

  78. Wang X, Hai C. Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep. 2016;43:607–28.

    Article  CAS  PubMed  Google Scholar 

  79. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA. 2010;107:7710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stoilova T, Colombo L, Forloni G, Tagliavini F, Salmona M. A new face for old antibiotics: tetracyclines in treatment of amyloidoses. J Med Chem. 2013;56:5987–6006.

    Article  CAS  PubMed  Google Scholar 

  81. Hao J, Kim CH, Ha TS, Ahn HY. Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Sci. 2007;8:121–9.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shammas MA, Neri P, Koley H, Batchu RB, Bertheau RC, Munshi V, et al. Specific killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood. 2006;108:2804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors declare no conflict of interest associated with this manuscript. We thank Arinobu Tojo MD, PhD of the Center for Translational Research, The Institute of Medical Science Hospital, The University of Tokyo, for his important contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohsuke Meshitsuka.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshitsuka, S., Shingaki, S., Hotta, M. et al. Phase 2 trial of daily, oral epigallocatechin gallate in patients with light-chain amyloidosis. Int J Hematol 105, 295–308 (2017). https://doi.org/10.1007/s12185-016-2112-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2112-1

Keywords

Navigation