Skip to main content

Advertisement

Log in

Residual disease detected by multidimensional flow cytometry shows prognostic significance in childhood acute myeloid leukemia with intermediate cytogenetics and negative FLT3-ITD: a report from the Tokyo Children’s Cancer Study Group

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Residual disease (RD) after induction chemotherapy may predict clinical outcome in acute myeloid leukemia (AML). In the present study, we investigated the prognostic significance of RD detected by multidimensional flow cytometry (MDF) among 34 children treated for AML in a clinical trial (JPLSG AML-05) in Japan. Bone marrow samples were analyzed at the points of the end of the first induction course (BMA-1) and second induction course (BMA-2) by MDF. RD was evaluated by detecting the immature cells showing abnormal antigen expression pattern; CD34+, CD15+, CD7+. Thirteen (39.4 %) of 34 patients at BMA-1 and 8 (27.6 %) of 34 at BMA-2 had RD levels ≥0.1 %. There was no significant difference in 3y-EFS and 3y-OS between patients with RD levels ≥0.1 % and those with RD levels <0.1 % (53.8 versus 70.0 %, P = 0.30 and 50.0 versus 66.7 %, P = 0.27, respectively). However, IR cytogenetics and negative FLT3-ITD patients with RD levels ≥0.1 % exhibited significantly lower 3y-EFS and 3y-OS than those with RD levels <0.1 % (33.3 versus 83.3 %, P = 0.02 and 20.0 versus 76.9 %, P = 0.005, respectively). Our study suggests that RD shows prognostic relevance in pediatric patients with IR cytogenetics and negative FLT3-ITD AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93:3074–80.

    CAS  PubMed  Google Scholar 

  2. Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108:3654–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsukimoto I, Tawa A, Horibe K, Tabuchi K, Kigasawa H, Tsuchid M, et al. Risk-stratified therapy and the intensive use of cytarabine improves the outcome in childhood acute myeloid leukemia: the AML99 trial from the Japanese Childhood AML Cooperative Study Group. J Clin Oncol. 2009;27:4007–13.

    Article  CAS  PubMed  Google Scholar 

  4. Gibson BE, Wheatley K, Hann IM, Stevens RF, Webb D, Hills RK, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia. 2005;19:2130–8.

    Article  CAS  PubMed  Google Scholar 

  5. Creutzig U, Zimmermann M, Lehrnbecher T, Graf N, Hermann J, Niemeyer CM, et al. Less toxicity by optimizing chemotherapy, but not by addition of granulocyte colony-stimulating factor in children and adolescents with acute myeloid leukemia: results of AML-BFM 98. J Clin Oncol. 2006;24:4499–506.

    Article  CAS  PubMed  Google Scholar 

  6. Abrahamsson J, Forestier E, Heldrup J, Kirsi Jahnukainen K, Jo´nsson OG, et al. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate. J Clin Oncol. 2011;29:310–5.

    Article  PubMed  Google Scholar 

  7. Lange BJ, Smith FO, Feusner J, Barnard DR, Dinndorf P, Feig S, et al. Outcomes in CCG-2961, a children`s oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children’s oncology group. Blood. 2008;111:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pui CH, Carroll WL, Meshinochi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29:551–65.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11:543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Velden VH, van der Sluijs-Geling A, Gibson BE, te Marvelde JG, Hoogeveen PG, Hop WC, et al. Clinical significance of flowcytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Leukemia. 2014;24:1599–606.

    Article  Google Scholar 

  11. Loken MR, Alonzo TA, Pardo L, Gerbing RB, Raimondi SC, Hirsch BA, et al. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group. Blood. 2012;120:1581–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. MRD-AML-BFM Study Group, Langebrake C, Creutzig U, Dworzak M, Hrusak O, Mejstrikova E, Griesinger F, et al. Residual disease monitoring in children acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM study group. J Clin Oncol. 2006;24:3686–92.

    Article  Google Scholar 

  13. Tomizawa D, Tawa A, Watanabe T, Saito AM, Kudo K, Taga T, et al. Excess treatment reduction including anthracyclines results in higher incidence of relapse in core binding factor acute myeloid leukemia in children. Leukemia. 2013;27:2413–6.

    Article  CAS  PubMed  Google Scholar 

  14. Loken MR, Van de Loosdrecht A, Ogata K, Orfao A, Wells DA. Flow cytometry in myelodysplastic syndromes: report from a working conference. Leuk Res. 2008;32:5–17.

    Article  PubMed  Google Scholar 

  15. Stelzer GT, Shults KE, Loken MR. CD45 gating for routine flow cytometric analysis of human bone marrow specimens. Ann NY Acad Sci. 1993;677:265–80.

    Article  CAS  PubMed  Google Scholar 

  16. Miyazaki T, Fujita H, Fujimaki K, Hosoyama T, Watanabe R, Tachibana T, et al. Clinical significance of minimal residual disease detected by multidimensional flow cytometry: serial monitoring after allogeneic stem cell transplantation for acute leukemia. Leuk Res. 2012;36:998–1003.

    Article  PubMed  Google Scholar 

  17. Sievers EL, Lange BJ, Alonzo TA, Gerbing RB, Bernstein ID, Smith FO, et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood. 2003;101:3398–406.

    Article  CAS  PubMed  Google Scholar 

  18. Borowitz MJ, Guenther KL, Shults KE, Stelzer GT. Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol. 1993;100:534–40.

    Article  CAS  PubMed  Google Scholar 

  19. Wells DA, Benesch M, Loken MR, Vallejo C, Myerson D, Leisenring WM, et al. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood. 2003;102:394–403.

    Article  CAS  PubMed  Google Scholar 

  20. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcome, and Reporting Standards for therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;15:4642–9.

    Article  Google Scholar 

  21. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into MRC AML10 trial. Blood. 1998;92:2322–33.

    CAS  PubMed  Google Scholar 

  22. Raimondi SC, Chang MN, Behm FG, Gresik MV, Steuber CP, Weinstein HJ, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in Cooperative Pediatric Oncology Group Study—POG8821. Blood. 1999;94:3707–16.

    CAS  PubMed  Google Scholar 

  23. Inaba H, Coustan-Smith E, Cao X, Pounds SB, Shurtleff SA, Wang KY, et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012;30:3625–32.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grimwade D, Freeman SD. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for “prime time”? Blood. 2014;27:3345–55.

    Article  Google Scholar 

  25. Feller N, van der Pol MA, van Stijn A, Weijers GW, Westra AH, Evertse BW, et al. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukemia. Leukemia. 2004;18:1380–90.

    Article  CAS  PubMed  Google Scholar 

  26. Coustan-smith E, Ribeiro RC, Rubnitz JE, Razzouk BI, Pui CH, Pounds S, et al. Clinical significance of residual disease during treatment in childhood acute myeloid leukemia. Br J Haematol. 2003;123:243–52.

    Article  PubMed  Google Scholar 

  27. Campana D. Status of minimal residual disease testing in childhood haematological malignancies. Br J Haematol. 2008;143:481–9.

    PubMed  PubMed Central  Google Scholar 

  28. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ossenkoppele GJ, van de Loosdrecht AA, Schuurhuis GJ. Review of the relevance of aberrant antigen expression by flow cytometry in myeloid neoplasms. Br J Haematol. 2011;153:421–36.

    Article  CAS  PubMed  Google Scholar 

  30. Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA. Association of a leukemic cell gene expression signature with clinical outcome in acute myeloid leukemia. JAMA. 2010;304:2706–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wouters R, Cucchi D, Kaspers GJ, Schuurhuis GJ, Cloos J. Relevance of leukemic stem cells in acute myeloid leukemia: heterogeneity and influence on disease monitoring, prognosis and treatment design. Expert Rev Hematol. 2014;7:791–805.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Keino.

Ethics declarations

Conflict of interest

This study was financially supported by Kyowa Hakko Kirin Co. Ltd.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keino, D., Kinoshita, A., Tomizawa, D. et al. Residual disease detected by multidimensional flow cytometry shows prognostic significance in childhood acute myeloid leukemia with intermediate cytogenetics and negative FLT3-ITD: a report from the Tokyo Children’s Cancer Study Group. Int J Hematol 103, 416–422 (2016). https://doi.org/10.1007/s12185-016-1937-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-1937-y

Keywords

Navigation