Skip to main content

Advertisement

Log in

JARID2 inhibits leukemia cell proliferation by regulating CCND1 expression

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

It has recently been shown that JARID2 contributes to the malignant character of solid tumors, such as epithelial-mesenchymal transition in lung and colon cancer cell lines, but its role in leukemia progression is unexplored. In this study, we explored the effect and underlying molecular mechanism of JARID2 on leukemia cell proliferation. Real-time PCR and Western assay were carried out to detect JARID2 and CCND1 expression. Cell number and cell cycle change were detected using hemocytometer and flow cytometry, and a ChIP assay was utilized to investigate JARID2 and H3K27me3 enrichment on the CCND1 promoter. JARID2 is down-regulated in B-chronic lymphocytic leukemia (B-CLL) and acute monocytic leukemia (AMOL), and knockdown of JARID2 promotes leukemia cell proliferation via acceleration of the G1/S transition. Conversely, ectopic expression of JARID2 inhibits these malignant phenotypes. Mechanistic studies show that JARID2 negatively regulates CCND1 expression by increasing H3K27 trimethylation on the CCND1 promoter. Our findings indicate that JARID2 is a negative regulator of leukemia cell proliferation, and functions as potential tumor suppressor in leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.

    Article  PubMed  Google Scholar 

  2. A Snapshot of Leukemia. NCI. http://www.cancer.gov/researchandfunding/snapshots/leukemia. Retrieved June 18 2014.

  3. Fircanis S, Merriam P, Khan N, Castillo JJ. The relation between cigarette smoking and risk of acute myeloid leukemia: an updated meta-analysis of epidemiological studies. Am J Hematol. 2014;89:E125–32.

    Article  PubMed  Google Scholar 

  4. Wakeford R, Little MP, Kendall GM. Risk of childhood leukemia after low-level exposure to ionizing radiation. Expert Rev Hematol. 2010;3:251–4.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mezei G, Sudan M, Izraeli S, Kheifets L. Epidemiology of childhood leukemia in the presence and absence of Down syndrome. Cancer Epidemiol. 2014;38:479–89.

    Article  PubMed  Google Scholar 

  6. Martin-Subero JI, Lopez-Otin C, Campo E. Genetic and epigenetic basis of chronic lymphocytic leukemia. Curr Opin Hematol. 2013;20:362–8.

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, Higashinakagawa T. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 1995;9:1211–22.

    Article  CAS  PubMed  Google Scholar 

  8. Berge-Lefranc JL, Jay P, Massacrier A, Cau P, Mattei MG, Bauer S, Marsollier C, et al. Characterization of the human jumonji gene. Hum Mol Genet. 1996;5:1637–41.

    Article  CAS  PubMed  Google Scholar 

  9. Motoyama J, Kitajima K, Kojima M, Kondo S, Takeuchi T. Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice. Mech Dev. 1997;66:27–37.

    Article  CAS  PubMed  Google Scholar 

  10. Takeuchi T, Kojima M, Nakajima K, Kondo S. jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mech Dev. 1999;86:29–38.

    Article  CAS  PubMed  Google Scholar 

  11. Lee Y, Song AJ, Baker R, Micales B, Conway SJ, Lyons GE. Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res. 2000;86:932–8.

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi M, Kojima M, Nakajima K, Suzuki-Migishima R, Motegi Y, Yokoyama M, Takeuchi T. Cardiac abnormalities cause early lethality of jumonji mutant mice. Biochem Biophys Res Commun. 2004;324:1319–23.

    Article  CAS  PubMed  Google Scholar 

  13. Kitajima K, Kojima M, Nakajima K, Kondo S, Hara T, Miyajima A, Takeuchi T. Definitive but not primitive hematopoiesis is impaired in jumonji mutant mice. Blood. 1999;93:87–95.

    CAS  PubMed  Google Scholar 

  14. Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S, Boucher G, et al. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Gene Dev. 2012;26:651–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Puda A, Milosevic JD, Berg T, Klampfl T, Harutyunyan AS, Gisslinger B, Rumi E, et al. Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. Am J Hematol. 2012;87:245–50.

    Article  CAS  PubMed  Google Scholar 

  16. Kinkel SA, Galeev R, Flensburg C, Keniry A, Breslin K, Gilan O, Lee S, et al. Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2. Blood 2015;125:1890–900.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell. 2009;139:1290–302.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Landeira D, Sauer S, Poot R, Dvorkina M, Mazzarella L, Jorgensen HF, Pereira CF, et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol. 2010;12:618–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang Z, Jones A, Sun CW, Li C, Chang CW, Joo HY, Dai Q, et al. PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. Stem Cells. 2011;29:229–40.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS One. 2014;9:e115684.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Shirato H, Ogawa S, Nakajima K, Inagawa M, Kojima M, Tachibana M, Shinkai Y, et al. A jumonji (Jarid2) protein complex represses CCND1 expression by methylation of histone H3-K9. J Biol Chem. 2009;284:733–9.

    Article  CAS  PubMed  Google Scholar 

  22. Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 2010;24:368–80.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kaneko S, Bonasio R, Saldana-Meyer R, Yoshida T, Son J, Nishino K, Umezawa A, et al. Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell. 2014;53:290–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ohno T, Nakajima K, Kojima M, Toyoda M, Takeuchi T. Modifiers of the jumonji mutation downregulate CCND1 expression and cardiac cell proliferation. Biochem Biophys Res Commun. 2004;317:925–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kitajima K, Kojima M, Kondo S, Takeuchi T. A role of jumonji gene in proliferation but not differentiation of megakaryocyte lineage cells. Exp Hematol. 2001;29:507–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Natural Science Foundation of Hubei Province (No. 2012FFB02435) and the central university special funding (No. 2013QN191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xiao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, CL., Deng, TR., Shang, Z. et al. JARID2 inhibits leukemia cell proliferation by regulating CCND1 expression. Int J Hematol 102, 76–85 (2015). https://doi.org/10.1007/s12185-015-1797-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1797-x

Keywords

Navigation