Skip to main content

Advertisement

Log in

Successful treatment of Philadelphia chromosome-positive mixed phenotype acute leukemia by appropriate alternation of second-generation tyrosine kinase inhibitors according to BCR-ABL1 mutation status

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Philadelphia chromosome-positive mixed phenotype acute leukemia (Ph+MPAL) is a rare type of acute leukemia having myeloid and lymphoid features. In the present study, we describe the successful treatment of a 71-year-old Japanese female patient with Ph+MPAL by the alternation of second-generation tyrosine kinase inhibitors according to BCR-ABL1 mutations. The patient survived in her third complete remission (CR) for over 4 years. In her first CR, the patient was treated with multiple-agent chemotherapy and underwent maintenance therapy with imatinib and monthly vincristine and prednisolone (VP). At the first relapse, an examination of the bone marrow revealed a transformation into acute lymphoblastic leukemia and an F317L mutation in BCR-ABL1 gene, which responded preferentially to nilotinib over dasatinib. She achieved second CR, and nilotinib with VP therapy was selected for maintenance treatment. At second relapse, BCR-ABL1 mutational analysis revealed Y253H mutation instead of F317L mutation, resulting in resistance to nilotinib. The patient achieved third CR with dasatinib and VP therapy, and maintained CR with this treatment. This suggests that appropriate alternation of TKIs may contribute to long-term survival in elderly patients with Ph+MPAL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Borowitz MJ, B.M., Harris NL, Porwit A, Matutes E. Acute leukemia of ambiguous lineage. In: CE Swerdlow SH, Harris NL, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th edn, Lyon: IARC; 2008. p. 150–155.

  2. Lee JH, Min YH, Chung CW, Kim BK, Yoon HJ, Jo DY, et al. Prognostic implications of the immunophenotype in biphenotypic acute leukemia. Leuk Lymphoma. 2008;49:700–9.

    Article  PubMed  CAS  Google Scholar 

  3. Xu XQ, Wang JM, Lü SQ, Chen L, Yang JM, Zhang WP, et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica. 2009;94:919–27.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Matutes E, Morilla R, Farahat N, Carbonell F, Swansbury J, Dyer M, et al. Definition of acute biphenotypic leukemia. Haematologica. 1997;82:64–6.

    PubMed  CAS  Google Scholar 

  5. Killick S, Matutes E, Powles RL, Hamblin M, Swansbury J, Treleaven JG, et al. Outcome of biphenotypic acute leukemia. Haematologica. 1999;84:699–706.

    PubMed  CAS  Google Scholar 

  6. Wang Y, Gu M, Mi Y, Qiu L, Bian S, Wang J. Clinical characteristics and outcomes of mixed phenotype acute leukemia with Philadelphia chromosome positive and/or BCR-ABL positive in adult. Int J Hematol. 2011;94:552–5.

    Article  PubMed  CAS  Google Scholar 

  7. Matutes E, Pickl WF, Van’t Veer M, Morilla R, Swansbury J, Strobl H, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood. 2011;117:3163–71.

    Article  PubMed  CAS  Google Scholar 

  8. Weinberg OK, Arber DA. Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia. 2010;24:1844–51.

    Article  PubMed  CAS  Google Scholar 

  9. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. 5-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    Article  PubMed  CAS  Google Scholar 

  10. Towatari M, Yanada M, Usui N, Takeuchi J, Sugiura I, Takeuchi M, et al. Combination of intensive chemotherapy and imatinib can rapidly induce high-quality complete remission for a majority of patients with newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Blood. 2004;104:3507–12.

    Article  PubMed  CAS  Google Scholar 

  11. Lee KH, Lee JH, Choi SJ, Lee JH, Seol M, Lee YS, et al. Clinical effect of imatinib added to intensive combination chemotherapy for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2005;19:1509–16.

    Article  PubMed  CAS  Google Scholar 

  12. Martin SE, DellaValla J. Untreated essential thrombocythemia evolving to biphenotypic leukemia, Philadelphia chromosome positive with monosomy 7: response to imatinib and reduced-intensity allogeneic stem cell transplant. Leukemia. 2005;19:1095–6.

    Article  PubMed  CAS  Google Scholar 

  13. Saitoh T, Matsushima T, Iriuchishima H, Yamane A, Irisawa H, Handa H, et al. Presentation of extramedullary Philadelphia chromosome-positive biphenotypic acute leukemia as testicular mass: response to imatinib-combined chemotherapy. Leuk Lymphoma. 2006;47:2667–9.

    Article  PubMed  CAS  Google Scholar 

  14. Selle B, Bär C, Hecker S, Schmidt-Rohr U, Viehmann S, Debatin KM, et al. ABL-specific tyrosine kinase inhibitor imatinib as salvage therapy in a child with Philadelphia chromosome-positive acute mixed lineage leukemia (AMLL). Leukemia. 2002;16:1393–5.

    Article  PubMed  CAS  Google Scholar 

  15. Ottmann OG, Pfeifer H. Management of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Hematol Am Soc Hematol Edu Prog. 2009; p. 371–381.

  16. Piccaluga PP, Paolini S, Bertuzzi C, De Leo A, Rosti G. First-line treatment of chronic myeloid leukemia with nilotinib: critical evaluation. J Blood Med. 2012;3:151–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Usuki K, Tojo A, Maeda Y, Kobayashi Y, Matsuda A, Ohyashiki K, et al. Efficacy and safety of nilotinib in Japanese patients with imatinib-resistant or -intolerant Ph+CML or relapsed/refractory Ph+ALL: a 36-month analysis of a phase I and II study. Int J Hematol. 2012;95:409–19.

    Article  PubMed  CAS  Google Scholar 

  18. Foà R, Vitale A, Vignetti M, Meloni G, Guarini A, De Propris MS, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118:6521–8.

    Article  PubMed  CAS  Google Scholar 

  19. Ravandi F, O’Brien S, Thomas D, Faderl S, Jones D, Garris R, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood. 2010;116:2070–7.

    Article  PubMed  CAS  Google Scholar 

  20. Kang HY, Hwang JY, Kim SH, Goh HG, Kim M, Kim DW. Comparison of allele specific oligonucleotide-polymerase chain reaction and direct sequencing for high throughput screening of ABL kinase domain mutations in chronic myeloid leukemia resistant to imatinib. Haematologica. 2006;91(5):659–62.

    PubMed  CAS  Google Scholar 

  21. Quintás-Cardama A, Cortes J. Molecular biology of BCR-ABL1-positive chronic myeloid leukemia. Blood. 2009;113:1619–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Laneuville P, Dilea C, Yin OQ, Woodman RC, Mestan J, Manley PW. Comparative In vitro cellular data alone are insufficient to predict clinical responses and guide the choice of BCR-ABL inhibitor for treating imatinib-resistant chronic myeloid leukemia. J Clin Oncol. 2010;28:e169–71.

    Article  PubMed  CAS  Google Scholar 

  23. Soverini S, et al. Presence or the emergence of a F317L BCR-ABL mutation may be associated with resistance to dasatinib in Philadelphia chromosome-positive leukemia. J Clin Oncol. 2006;24:e51–2.

    Article  PubMed  Google Scholar 

  24. Oyekunle AA, Castagnetti F, Gugliotta G, Soverini S, Baccarani M, Rosti G. F317L BCR-ABL1 kinase domain mutation associated with a sustained major molecular response in a CML patient on dasatinib. Leuk Res. 2011;35:e118–20.

    Article  PubMed  CAS  Google Scholar 

  25. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA, et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature. 2011;469:362–7.

    Article  PubMed  CAS  Google Scholar 

  26. Pfeifer H, Wassmann B, Pavlova A, Wunderle L, Oldenburg J, Binckebanck A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL). Blood. 2007;110:727–34.

    Article  PubMed  CAS  Google Scholar 

  27. Pfeifer H, Lange T, Wystub S, Wassmann B, Maier J, Binckebanck A, et al. Prevalence and dynamics of BCR-ABL kinase domain mutations during imatinib treatment differ in patients with newly diagnosed and recurrent BCR-ABL positive acute lymphoblastic leukemia. Leukemia. 2012;26:1475–81.

    Article  PubMed  CAS  Google Scholar 

  28. Soverini S, Vitale A, Poerio A, Gnani A, Colarossi S, Iacobucci I, et al. Philadelphia-positive acute lymphoblastic leukemia patients already harbor BCR-ABL kinase domain mutations at low levels at the time of diagnosis. Haematologica. 2011;96:552–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Tanaka.

About this article

Cite this article

Kawajiri, C., Tanaka, H., Hashimoto, S. et al. Successful treatment of Philadelphia chromosome-positive mixed phenotype acute leukemia by appropriate alternation of second-generation tyrosine kinase inhibitors according to BCR-ABL1 mutation status. Int J Hematol 99, 513–518 (2014). https://doi.org/10.1007/s12185-014-1531-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-014-1531-0

Keywords

Navigation