Skip to main content

Advertisement

Log in

Cell adhesion to fibronectin down-regulates the expression of Spy1 and contributes to drug resistance in multiple myeloma cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Spy1 is a member of the Speedy/Ringo family, which regulates cell proliferation and survival. Spy1 has been demonstrated to promote the cell-cycle progress through p27Kip1 degradation. Previous investigations have suggested cell adhesion-mediated drug resistance (CAM-DR) in multiple myeloma (MM) is a primary factor for minimal residual disease (MRD) leading to relapse after chemotherapy. However, the precise mechanism remains elusive. In this study, we used MM cell lines to determine whether Spy1 plays a role in CAM-DR. We demonstrated that adhesion of MM cells to fibronectin (FN) decreased Spy1 expression. Overexpression of Spy1 did not affect MM cells adhesion to FN, but did reverse the doxorubicin- or mitoxantrone-induced CAM-DR phenotype. Spy1 protein level was also correlated with reciprocal up-regulation of p27Kip1 when RPMI 8226 cells bound FN. Spy1 overexpression promoted p27Kip1 phosphorylation at T187, then induced the p27Kip1 degradation in the adhesion model. In addition, increasing p27Kip1 level or disturbing p27Kip1 phosphorylation at T187 abolished the CAM-DR reversion when Spy1 was overexpressed. Collectively, our data suggest that Spy1 plays an important role in CAM-DR, which depends on the function of p27Kip1. Our findings provide a rational framework for further development of Spy1 as a novel target for MM therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9:1158–65.

    Article  PubMed  CAS  Google Scholar 

  2. Preisler HD, Anderson K, Rai K, Cuttner J, Yates J, DuPre E, et al. The frequency of long-term remission in patients with acute myelogenous leukaemia treated with conventional maintenance chemotherapy: a study of 760 patients with a minimal follow-up time of 6 years. Br J Haematol. 1989;71:189–94.

    Article  PubMed  CAS  Google Scholar 

  3. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93:1658–67.

    PubMed  CAS  Google Scholar 

  4. Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS. Adhesion to fibronectin via beta1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene. 2000;19:4319–27.

    Article  PubMed  CAS  Google Scholar 

  5. Shain KH, Landowski TH, Dalton WS. The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Curr Opin Oncol. 2000;12:557–63.

    Article  PubMed  CAS  Google Scholar 

  6. Fornaro M, Steger CA, Bennett AM, Wu JJ, Languino LR. Differential role of beta(1C) and beta(1A) integrin cytoplasmic variants in modulating focal adhesion kinase, protein kinase B/AKT, and Ras/Mitogen-activated protein kinase pathways. Mol Biol Cell. 2000;11:2235–49.

    Article  PubMed  CAS  Google Scholar 

  7. Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995;9:1149–63.

    Article  PubMed  CAS  Google Scholar 

  8. Lee JW, Juliano R. Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Mol Cells. 2004;17:188–202.

    PubMed  CAS  Google Scholar 

  9. Assoian RK. Anchorage-dependent cell cycle progression. J Cell Biol. 1997;136:1–4.

    Article  PubMed  CAS  Google Scholar 

  10. Assoian RK, Schwartz MA. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr Opin Genet Dev. 2001;11:48–53.

    Article  PubMed  CAS  Google Scholar 

  11. Damiano JS, Dalton WS. Integrin-mediated drug resistance in multiple myeloma. Leuk Lymphoma. 2000;38:71–81.

    PubMed  CAS  Google Scholar 

  12. Lwin T, Hazlehurst LA, Dessureault S, Lai R, Bai W, Sotomayor E, et al. Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas. Blood. 2007;110:1631–8.

    Article  PubMed  CAS  Google Scholar 

  13. DelSal G, Loda M, Pagano M. Cell cycle and cancer: critical events at the G1 restriction point. Crit Rev Oncog. 1996;7:127–42.

    Article  PubMed  CAS  Google Scholar 

  14. Morgan DO. The dynamics of cyclin dependent kinase structure. Curr Opin Cell Biol. 1996;8:767–72.

    Article  PubMed  CAS  Google Scholar 

  15. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.

    Article  PubMed  CAS  Google Scholar 

  16. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature. 1998;396:177–80.

    Article  PubMed  CAS  Google Scholar 

  17. Morgan DO. Principles of CDK regulation. Nature. 1995;374:131–4.

    Article  PubMed  CAS  Google Scholar 

  18. Nakayama K. Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development. Bioessays. 1998;20:1020–9.

    Article  PubMed  CAS  Google Scholar 

  19. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994;78:59–66.

    Article  PubMed  CAS  Google Scholar 

  20. Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.

    Article  PubMed  CAS  Google Scholar 

  21. Cheng A, Xiong W, Ferrell JE Jr, Solomon MJ. Identification and comparative analysis of multiple mammalian Speedy/Ringo proteins. Cell Cycle. 2005;4:155–65.

    Article  PubMed  CAS  Google Scholar 

  22. Dinarina A, Perez LH, Davila A, Schwab M, Hunt T, Nebreda AR. Characterization of a new family of cyclin-dependent kinase activators. Biochem J. 2005;386:349–55.

    Article  PubMed  CAS  Google Scholar 

  23. Ferby I, Blazquez M, Palmer A, Eritja R, Nebreda AR. A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes. Genes Dev. 1999;13:2177–89.

    Article  PubMed  CAS  Google Scholar 

  24. Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ. Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J. 1999;18:1869–77.

    Article  PubMed  CAS  Google Scholar 

  25. Nebreda AR. CDK activation by non-cyclin proteins. Curr Opin Cell Biol. 2006;18:192–8.

    Article  PubMed  CAS  Google Scholar 

  26. Porter LA, Dellinger RW, Tynan JA, Barnes EA, Kong M, Lenormand JL, et al. Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol. 2002;157:357–66.

    Article  PubMed  CAS  Google Scholar 

  27. Karaiskou A, Perez LH, Ferby I, Ozon R, Jessus C, Nebreda AR. Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem. 2001;276:36028–34.

    Article  PubMed  CAS  Google Scholar 

  28. Barnes EA, Porter LA, Lenormand JL, Dellinger RW, Donoghue DJ. Human Spy1 promotes survival of mammalian cells following DNA damage. Cancer Res. 2003;63:3701–7.

    PubMed  CAS  Google Scholar 

  29. Porter LA, Kong-Beltran M, Donoghue DJ. Spy1 interacts with p27Kip1 to allow G1/S progression. Mol Biol Cell. 2003;14:3664–74.

    Article  PubMed  CAS  Google Scholar 

  30. Gastwirt RF, McAndrew CW, Donoghue DJ. Speedy/RINGO regulation of CDKs in cell cycle, checkpoint activation and apoptosis. Cell Cycle. 2007;6:1188–93.

    Article  PubMed  CAS  Google Scholar 

  31. McAndrew CW, Gastwirt RF, Meyer AN, Porter LA, Donoghue DJ. Spy1 enhances phosphorylation and degradation of the cell cycle inhibitor p27. Cell Cycle. 2007;6:1937–45.

    Article  PubMed  CAS  Google Scholar 

  32. Bell MP, Huntoon CJ, Graham D, McKean DJ. The analysis of costimulatory receptor signaling cascades in normal T lymphocytes using in vitro gene transfer and reporter gene analysis. Nat Med. 2001;7:1155–8.

    Article  PubMed  CAS  Google Scholar 

  33. Bhattacharjee RN, Banks GC, Trotter KW, Lee HL, Archer TK. Histone H1 phosphorylation by Cdk2 selectively modulates mouse mammary tumor virus transcription through chromatin remodeling. Mol Cell Biol. 2001;21:5417–25.

    Article  PubMed  CAS  Google Scholar 

  34. Hazlehurst LA, Dalton WS. Mechanisms associated with cell adhesion mediated drug resistance (CAM-DR) in hematopoietic malignancies. Cancer Metastasis Rev. 2001;20:43–50.

    Article  PubMed  CAS  Google Scholar 

  35. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6:369–81.

    Article  PubMed  CAS  Google Scholar 

  36. Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene. 2001;20:4995–5004.

    Article  PubMed  CAS  Google Scholar 

  37. Hazlehurst LA, Enkemann SA, Beam CA, Argilagos RF, Painter J, Shain KH, et al. Genotypic and phenotypic comparisons of de novo and acquired melphalan resistance in an isogenic multiple myeloma cell line model. Cancer Res. 2003;63:7900–6.

    PubMed  CAS  Google Scholar 

  38. Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med. 1999;5:662–8.

    Article  PubMed  CAS  Google Scholar 

  39. Sherman-Baust CA, Weeraratna AT, Rangel LB, Pizer ES, Cho KR, Schwartz DR, et al. Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell. 2003;3:377–86.

    Article  PubMed  CAS  Google Scholar 

  40. Zucchi I, Mento E, Kuznetsov VA, Scotti M, Valsecchi V, Simionati B, et al. Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis. Proc Natl Acad Sci USA. 2004;101:18147–52.

    Article  PubMed  CAS  Google Scholar 

  41. Ke Q, Ji J, Cheng C, Zhang Y, Lu M, Wang Y, et al. Expression and prognostic role of Spy1 as a novel cell cycle protein in hepatocellular carcinoma. Exp Mol Pathol. 2009;87:167–72.

    Article  PubMed  CAS  Google Scholar 

  42. Hang Q, Fei M, Hou S, Ni Q, Lu C, Zhang G, et al. Expression of Spy1 protein in human non-Hodgkin’s lymphomas is correlated with phosphorylation of p27 Kip1 on Thr187 and cell proliferation. Med Oncol. 2012;29:3504–14.

    Article  PubMed  CAS  Google Scholar 

  43. Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med. 1997;3:231–4.

    Article  PubMed  CAS  Google Scholar 

  44. Weinstein IB. Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis. 2000;21:857–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

All the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changgeng Ruan.

Additional information

M. Fei and Q. Hang contributed equally to this work.

About this article

Cite this article

Fei, M., Hang, Q., Hou, S. et al. Cell adhesion to fibronectin down-regulates the expression of Spy1 and contributes to drug resistance in multiple myeloma cells. Int J Hematol 98, 446–455 (2013). https://doi.org/10.1007/s12185-013-1435-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-013-1435-4

Keywords

Navigation