Skip to main content

Advertisement

Log in

AKT3, ANGPTL4, eNOS3, and VEGFA associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Mountain sickness (MS) occurs among humans visiting or inhabiting high altitude environments. We conducted genetic analyses of the AKT3, ANGPTL4, eNOS3 and VEGFA genes in lowland (Han) and highland (Tibetan) Chinese. Ten single nucleotide polymorphisms (SNPs) were evaluated in Han and Tibetan patients with acute (A) and chronic (C) MS. We compared 74 patients with AMS to 79 Han unaffected with MS, as well as 48 CMS patients to 31 unaffected Tibetans. The ten SNPs studied are AKT3 (rs4590656, rs2291409), ANGPTL4 (rs1044250), eNOS3 (rs1007311, rs1799983) and VEGFA (rs79469752, rs13207351, rs28357093, rs1570360, rs3025039). Direct sequencing was used to identify individual genotypes for these SNPs. Hemoglobin (Hb), hematocrit (Hct), and red blood cell count (RBC) were found to be significantly associated with the AKT3 SNP (rs4590656), Hb was found to be associated with the eNOS3 SNP (rs1007311), and RBC was found to be significantly associated with the VEGFA SNP (rs1570360) in Tibetan patients with CMS. CMS patients were found to diverge significantly for both eNOS3 SNPs as measured by genetic distance (0.042, 0.047) and for the VEGFA SNP (rs28357093) with a genetic distance of 0.078 compared to their Tibetan control group. Heart rate (HR) was found to be significantly associated with the eNOS3 SNP (rs1799983) and arterial oxygen saturation of hemoglobin (SaO2) was found to be significantly associated with the VEGFA SNPs (rs13207351, rs1570360) in Han patients with AMS. The Han and Tibetan control groups were found to diverge significantly for the ANGPTL4 SNP and VEGFA SNP (rs28357093), as measured by genetic distances of 0.049 and 0.073, respectively. Seven of the SNPs from non-coding regions are found in the transcriptional factor response elements and their possible role in gene regulation was evaluated with regard to MS. AMS and CMS were found to be significantly associated with the four genes compared to their Han and Tibetan control groups, respectively, indicating that these nucleotide alterations have a physiological effect for the development of high altitude sickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345:107–14.

    Article  PubMed  CAS  Google Scholar 

  2. Bartsch P, Bailey DM, Berger MM, Knauth M, Baumgartner RW. Acute mountain sickness: controversies and advances. High Alt Med Biol. 2004;5:110–24.

    Article  PubMed  Google Scholar 

  3. Ning XH, Li SP. Health care at high altitude—self-care universal health book. Shanghai: Shanghai Science and Technology Publishing House; 2006. p. 66–8.

    Google Scholar 

  4. Monge C. Chronic mountain sickness. Physiol Rev. 1943;23:166–84.

    CAS  Google Scholar 

  5. Winslow RM, Monge CC. Hypoxia, polycythemia, and chronic mountain sickness. Baltimore: Johns Hopkins University Press; 1987.

    Google Scholar 

  6. Moore LG. Human genetic adaptation to high altitude. High Alt Med Biol. 2001;2:257–79.

    Article  PubMed  CAS  Google Scholar 

  7. Wu TY, Li WS, Wei LY, et al. A preliminary studies on the diagnosis of chronic mountain sickness in Tibetan populations. Matsumoto: Press Committee of the 3rd World congress on Mountain Medicine and High Altitude Physiology; 1998.

  8. Leon-Velarde F, McCullough RG, McCullough RE, Reeves JT. Proposal for scoring severity in chronic mountain sickness (CMS). Background and conclusions of the CMS Working Group. Adv Exp Med Biol. 2003;543:339–54.

    Article  PubMed  Google Scholar 

  9. Ainslie PN, Ogoh S. Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Exp Physiol. 2010;95:251–62.

    Article  PubMed  Google Scholar 

  10. Gassmann M, Soliz J. Erythropoietin modulates the neural control of hypoxic ventilation. Cellular and molecular life sciences. CMLS. 2009;66:3575–82.

    Article  PubMed  CAS  Google Scholar 

  11. West JB. The physiologic basis of high-altitude diseases. Ann Intern Med. 2004;141:789–800.

    PubMed  Google Scholar 

  12. Strohl KP. Lessons in hypoxic adaptation from high-altitude populations. Sleep Breath. 2008;12:115–21.

    Article  PubMed  Google Scholar 

  13. Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009;8:175–91.

    Article  PubMed  CAS  Google Scholar 

  14. Su B, Xiao C, Deka R, Seielstad MT, Kangwanpong D, Xiao J, Lu D, Underhill P, Cavalli-Sforza L, Chakraborty R, et al. Y chromosome haplotypes reveal prehistorical migrations to the Himalayas. Hum Genet. 2000;107:582–90.

    Article  PubMed  CAS  Google Scholar 

  15. Torroni A, Miller JA, Moore LG, Zamudio S, Zhuang J, Droma T, Wallace DC. Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. Am J Phys Anthropol. 1994;93:189–99.

    Article  PubMed  CAS  Google Scholar 

  16. Du R, Xiao C, Cavalli-Sforza LL. Genetic distances between Chinese populations calculated on gene frequencies of 38 loci. Sci China C Life Sci. 1997;40:613–21.

    Article  PubMed  CAS  Google Scholar 

  17. Maloney J, Wang D, Duncan T, Voelkel N, Ruoss S. Plasma vascular endothelial growth factor in acute mountain sickness. Chest. 2000;118:47–52.

    Article  PubMed  CAS  Google Scholar 

  18. Dorward DA, Thompson AA, Baillie JK, MacDougall M, Hirani N. Change in plasma vascular endothelial growth factor during onset and recovery from acute mountain sickness. Respir Med. 2007;101:587–94.

    Article  PubMed  Google Scholar 

  19. Walter R, Maggiorini M, Scherrer U, Contesse J, Reinhart WH. Effects of high-altitude exposure on vascular endothelial growth factor levels in man. Eur J Appl Physiol. 2001;85:113–7.

    Article  PubMed  CAS  Google Scholar 

  20. Stobdan T, Karar J, Pasha MA. High altitude adaptation: genetic perspectives. High Alt Med Biol. 2008;9:140–7.

    Article  PubMed  CAS  Google Scholar 

  21. Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, Lopez Herraez D, et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet 2010; 6:1–14.

    Google Scholar 

  22. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329:75–8.

    Article  PubMed  CAS  Google Scholar 

  23. Rupert JL, Koehle MS. Evidence for a genetic basis for altitude-related illness. High Alt Med Biol. 2006;7:150–67.

    Article  PubMed  CAS  Google Scholar 

  24. Buroker NE, Ning XH, Zhou ZN, Li K, Cen WJ, Wu XF, Ge M, Fan LP, Zhu WZ, Portman MA, et al. Genetic associations with mountain sickness in Han and Tibetan residents at the Qinghai-Tibetan Plateau. Clin Chim Acta. 2010;411:1466–73.

    Article  PubMed  CAS  Google Scholar 

  25. Buroker NE, Ning XH, Zhou ZN, Li K, Cen WJ, Wu XF, Zhu WZ, Scott CR, Chen SH. EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. Blood Cells Mol Dis 2012;49 (in press).

  26. Droma Y, Hanaoka M, Ota M, Katsuyama Y, Koizumi T, Fujimoto K, Kobayashi T, Kubo K. Positive association of the endothelial nitric oxide synthase gene polymorphisms with high-altitude pulmonary edema. Circulation. 2002;106:826–30.

    Article  PubMed  CAS  Google Scholar 

  27. Hanaoka M, Droma Y, Ota M, Ito M, Katsuyama Y, Kubo K. Polymorphisms of human vascular endothelial growth factor gene in high-altitude pulmonary oedema susceptible subjects. Respirology. 2009;14:46–52.

    Article  PubMed  Google Scholar 

  28. Hackett PH, Oelz O (1992). The diagnoses accord with the Lake Louise scoring system. In: Sutton GC JR, Houston CS, editors. Hypoxia and mountain sickness. New York: Pergamon Press, pp. 327–330.

  29. Schneider S, Roessli D, Excoffier L. Arlequin ver. 2.000: A software for population genetics data analysis. 2.000 Edition. Geneva; 2000.

  30. Nei M, Roychoudhury AK. Sampling variances of heterozygosity and genetic distance. Genetics. 1974;76:379–90.

    PubMed  CAS  Google Scholar 

  31. Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting F(ST). Nat Rev Genet. 2009;10:639–50.

    Article  PubMed  CAS  Google Scholar 

  32. Ding K, Zhou K, He F, Shen Y. LDA–a java-based linkage disequilibrium analyzer. Bioinformatics. 2003;19:2147–8.

    Article  PubMed  CAS  Google Scholar 

  33. Weir BS. Genetic data analysis: methods for discrete population genetic data. Sunderland: Sinauer Associates; 1990.

    Google Scholar 

  34. Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I, Krogh A, Lenhard B, Sandelin A. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. 2008;36:D102–6.

    Article  PubMed  CAS  Google Scholar 

  35. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004;32:D91–4.

    Article  PubMed  CAS  Google Scholar 

  36. Sandelin A, Wasserman WW, Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res. 2004;32:W249–52.

    Article  PubMed  CAS  Google Scholar 

  37. Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, Ladomery MR, Harper SJ, Bates DO. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci. 2008;121:3487–95.

    Article  PubMed  CAS  Google Scholar 

  38. Woolard J, Bevan HS, Harper SJ, Bates DO. Molecular diversity of VEGF-A as a regulator of its biological activity. Microcirculation. 2009;16:572–92.

    Article  PubMed  CAS  Google Scholar 

  39. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010;329:72–5.

    Article  PubMed  CAS  Google Scholar 

  40. Appenzeller O, Minko T, Pozharov V, Bonfichi M, Malcovati L, Gamboa J, Bernardi L. Gene expression in the Andes; relevance to neurology at sea level. J Neurol Sci. 2003;207:37–41.

    Article  PubMed  CAS  Google Scholar 

  41. Patitucci M, Lugrin D, Pages G. Angiogenic/lymphangiogenic factors and adaptation to extreme altitudes during an expedition to Mount Everest. Acta Physiol. 2009;196:259–65.

    Article  CAS  Google Scholar 

  42. Gao W, Gao Y, Zhang G, Song L, Sun B, Shi J. Hypoxia-induced expression of HIF-1alpha and its target genes in umbilical venous endothelial cells of Tibetans and immigrant Han. Comp Biochem Physiol Toxicol Pharmacol. 2005;141:93–100.

    Article  Google Scholar 

  43. Appenzeller O, Minko T, Qualls C, Pozharov V, Gamboa J, Gamboa A, Wang Y. Gene expression, autonomic function and chronic hypoxia: lessons from the Andes. Clinical Auton Res. 2006;16:217–22.

    Article  Google Scholar 

  44. Dai J, Rabie AB. VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res. 2007;86:937–50.

    Article  PubMed  CAS  Google Scholar 

  45. Harper SJ, Bates DO. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer. 2008;8:880–7.

    Article  PubMed  CAS  Google Scholar 

  46. Xu J, Dou T, Liu C, Fu M, Huang Y, Gu S, Zhou Y, Xie Y. The evolution of alternative splicing exons in vascular endothelial growth factor A. Gene. 2011;487:143–50.

    Article  PubMed  CAS  Google Scholar 

  47. Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6:209.

    Article  PubMed  Google Scholar 

  48. Ding H, Liu Q, Hua M, Ding M, Du H, Zhang W, Li Z, Zhang J. Polymorphisms of hypoxia-related genes in subjects susceptible to acute mountain sickness. Respiration. 2011;81:236–41.

    Article  PubMed  CAS  Google Scholar 

  49. Bader AG, Kang S, Zhao L, Vogt PK. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer. 2005;5:921–9.

    Article  PubMed  CAS  Google Scholar 

  50. Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;4:51.

    Article  PubMed  CAS  Google Scholar 

  51. Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA. 2001;98:10983–5.

    Article  PubMed  CAS  Google Scholar 

  52. Wang P, Koehle MS, Rupert JL. Genotype at the missense G894T polymorphism (Glu298Asp) in the NOS3 gene is associated with susceptibility to acute mountain sickness. High Alt Med Biol. 2009;10:261–7.

    Article  PubMed  CAS  Google Scholar 

  53. Sawada T, Kishimoto T, Osaki Y, Okamoto M, Tahara A, Kaetu A, Kurosawa Y, Kotani K. Relation of the Glu298Asp polymorphism of the nitric oxide synthase gene to hypertension and serum cholesterol in Japanese workers. Prev Med. 2008;47:167–71.

    Article  PubMed  CAS  Google Scholar 

  54. Srivastava K, Narang R, Sreenivas V, Das S, Das N. Association of eNOS Glu298Asp gene polymorphism with essential hypertension in Asian Indians. Clin Chim Acta. 2008;387:80–3.

    Article  PubMed  CAS  Google Scholar 

  55. Lichtenstein L, Berbee JF, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, Voshol PJ, Muller M, Rensen PC, Kersten S. Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol. 2007;27:2420–7.

    Article  PubMed  CAS  Google Scholar 

  56. Yu X, Burgess SC, Ge H, Wong KK, Nassem RH, Garry DJ, Sherry AD, Malloy CR, Berger JP, Li C. Inhibition of cardiac lipoprotein utilization by transgenic overexpression of Angptl4 in the heart. Proc Natl Acad Sci USA. 2005;102:1767–72.

    Article  PubMed  CAS  Google Scholar 

  57. Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, Philippe J, Sibony M, Gasc JM, Corvol P, et al. Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol. 2003;162:1521–8.

    Article  PubMed  Google Scholar 

  58. Smart-Halajko MC, Robciuc MR, Cooper JA, Jauhiainen M, Kumari M, Kivimaki M, Khaw KT, Boekholdt SM, Wareham NJ, Gaunt TR, et al. The relationship between plasma angiopoietin-like protein 4 levels, angiopoietin-like protein 4 genotype, and coronary heart disease risk. Arterioscler Thromb Vasc Biol. 2010;30:2277–82.

    Article  PubMed  CAS  Google Scholar 

  59. Wang X, Tomso DJ, Liu X, Bell DA. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes. Toxicol Appl Pharmacol. 2005;207:84–90.

    Article  PubMed  Google Scholar 

  60. Naqvi A, Hoffman TA, DeRicco J, Kumar A, Kim CS, Jung SB, Yamamori T, Kim YR, Mehdi F, Kumar S, et al. A single-nucleotide variation in a p53-binding site affects nutrient-sensitive human SIRT1 expression. Hum Mol Genet. 2010;19:4123–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rhona Jack, Department of Laboratory Medicine, Seattle Children’s Hospital, Institute, Foundation for her constructive criticism in reviewing this manuscript. This study was supported in part by the grants from Children’s Hospital and Regional Medical Center (HR5836), National Natural Science Foundation (No. 38970307 and No.30393130) and National Basic Research Program of China “973” (No. 2006CB504100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman E. Buroker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 239 kb)

About this article

Cite this article

Buroker, N.E., Ning, XH., Zhou, ZN. et al. AKT3, ANGPTL4, eNOS3, and VEGFA associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. Int J Hematol 96, 200–213 (2012). https://doi.org/10.1007/s12185-012-1117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1117-7

Keywords

Navigation