Skip to main content

Advertisement

Log in

Endothelial progenitor cell-based therapy for hemophilia A

  • Progress in Hematology
  • Vascular biology with relation to hematopoiesis
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

As shown by the results of both pre-clinical and clinical studies reported in past decades, the goal of establishing an effective and successful gene therapy for hemophilia A remains feasible and realistic. However, at this time, no single approach has been shown to be clearly superior, and a number of recurring challenges remain to be overcome. Given the persistent problems presented by the host immune response to systemic in vivo gene delivery, and the additional obstacles of inadequate transgene delivery and expression, we propose a re-evaluation of an ex vivo gene transfer approach that utilizes a genetically modified stem cell population. In this strategy, autologous blood outgrowth endothelial progenitor cells are obtained from hemophilic animals, into which a normal copy of the factor VIII gene is introduced via an engineered virus. Cell numbers are expanded in culture prior to their re-implantation under the skin of the hemophilic animals in an artificially developed supporting environment. Follow-up assessment of the treatment involves the general evaluation of clotting activity, the specific measurement of factor VIII levels in the blood, and clinical observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoyer LW. Hemophilia A. N Engl J Med. 1994;330:38–47.

    Article  PubMed  CAS  Google Scholar 

  2. Levine PH. Clinical manifestation and therapy of hemophilias A and B. In: Coloman RW, Hirsh J, Marder VJ, Salzman EW, editors. Hemostasis and Thrombosis: basic principles and clinical practice. Philadelphia: Lippincott, J.B; 1987. p. 97–111.

    Google Scholar 

  3. Boloton-Maggs PH, Pasi KJ. Haemophilias A and B. Lancet. 2003;361:1801–9.

    Article  Google Scholar 

  4. Valentino LA, Ewenstein B, Navickis RJ, Wilkes MM. Central venous access devices in hemophilia. Haemophilia. 2004;10:134–46.

    Article  PubMed  CAS  Google Scholar 

  5. Brooker M. The World Federation of Hemophilia’s third global forum on the Safety and Supply of Hemophilia Treatment Products, 22–23 September 2003, Budapest, Hungary. Haemophilia. 2004;10:290–4.

    Article  PubMed  CAS  Google Scholar 

  6. Jones P, Robillard L. The World Federation of Hemophilia: 40 years of improving hemophilia care worldwide. Haemophilia. 2003;9:663–9.

    Article  PubMed  Google Scholar 

  7. Blanchette VS, Manco-Johnson M, Santagostino E, Ljung R. Optimizing factor prophylaxis for the hemophilia population: where do we stand? Haemophilia. 2004;10(Suppl 4):97–104.

    Article  PubMed  Google Scholar 

  8. Mannucci PM, Tuddenham EG. The hemophilias—from royal genes to gene therapy. N Engl J Med. 2001;344:1773–9.

    Article  PubMed  CAS  Google Scholar 

  9. Giles AR, Tinlin S, Greenwood R. A canine model of hemophilic (factor VIII:C deficiency) bleeding. Blood. 1982;60:727.

    PubMed  CAS  Google Scholar 

  10. Hough C, Kamisue S, Cameron C, et al. Aberrant splicing and premature termination of transcription of the FVIII gene as a cause of severe hemophilia A: similarities with the intron 22 inversion mutation in human hemophilia. Thromb Haemost. 2002;87:659–65.

    PubMed  CAS  Google Scholar 

  11. Cameron C, Notley C, Hoyle S, et al. The canine factor VIII cDNA and 5′ flanking sequence. Thromb Haemost. 1998;79:317–22.

    PubMed  CAS  Google Scholar 

  12. Notley C, Kiloran A, Cameron C, Wynd K, Hough C, Lillicrap D. The canine FVIII 3′-untranslated region and a concatemeric hepatocyte nuclear factor 1 regulatory element enhance factor VIII transgene expression in vivo. Hum Gene Ther. 2002;13:1583–93.

    Article  PubMed  CAS  Google Scholar 

  13. Rawle FE, Lillicrap D. Preclinical animal models for hemophilia gene therapy: predictive value and limitations. Semin Thromb Haemost. 2004;30:205–13.

    Article  CAS  Google Scholar 

  14. Brown BD, Shi CX, Powell S, Hurlbut D, Graham FL, Lillicrap D. Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A. Blood. 2004;103:804–10.

    Article  PubMed  CAS  Google Scholar 

  15. Chao H, Mansfield SG, Bartel RC, et al. Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing. Nat Med. 2003;9:1015–9.

    Article  PubMed  CAS  Google Scholar 

  16. Chuah MK, Schiedner G, Thorrez L, et al. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. Blood. 2003;101:1734–43.

    Article  PubMed  CAS  Google Scholar 

  17. Connelly S, Andrews JL, Gallo AM, et al. Sustained phenotypic correction of murine hemophilia A by in vivo gene therapy. Blood. 1998;91:3273–81.

    PubMed  CAS  Google Scholar 

  18. Dwarki VJ, Belloni P, Nijjar T, et al. Gene therapy for hemophilia A: production of therapeutic levels of human factor VIII in vivo in mice. Proc Natl Acad Sci USA. 1995;92:1023–7.

    Article  PubMed  CAS  Google Scholar 

  19. Gallo-Penn AM, Shirley PS, Andrew JL, et al. In vivo evaluation of an adenoviral vector encoding canine factor VIII: high-level, sustained expression in hemophilia mice. Hum Gene Ther. 1999;10:1791–802.

    Article  PubMed  CAS  Google Scholar 

  20. Kay MA, Rorhenberg S, Landen CN, et al. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science. 1993;262:117–9.

    Article  PubMed  CAS  Google Scholar 

  21. Sarkar R, Tetreault R, Gao G, et al. Total correction of hemophilia a mice with canine FVIII using an AAV 8 serotype. Blood. 2004;103:1253–60.

    Article  PubMed  CAS  Google Scholar 

  22. Scallan CD, Lillicrap D, Jiang H, et al. Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector. Blood. 2003;102:2031–7.

    Article  PubMed  CAS  Google Scholar 

  23. Matsui H, Shibata M, Brown B, et al. A murine model for induction of long-term immunologic tolerance to factor VIII does not require persistent detectable levels of plasma factor VIII and involves contributions from Foxp3+ T regulatory cells. Blood. 2009;114:677–85.

    Article  PubMed  CAS  Google Scholar 

  24. Matsui H, Hegadorn C, Ozelo M, et al. A microRNA-regulated and GP64-pseudotyped lentiviral vector mediates stable expression of FVIII in a murine model of hemophilia A. Mol Ther. 2011;19:723–30.

    Article  PubMed  CAS  Google Scholar 

  25. Roth DA, Tawa NE Jr, O’Brien JM, Treco DA, Selden RF. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med. 2001;344:1735–42.

    Article  PubMed  CAS  Google Scholar 

  26. Powell JS, Ragni MV, White GC, et al. Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administrated by peripheral intravenous infusion. Blood. 2003;102:2038–45.

    Article  PubMed  CAS  Google Scholar 

  27. Manno CS, Chew AJ, Hutchinson S, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101:2963–72.

    Article  PubMed  CAS  Google Scholar 

  28. Brown BD, Lillicrap D. Dangerous liaisons: the role of “danger” signals in the immune response to gene therapy. Blood. 2002;100:1133–40.

    Article  PubMed  CAS  Google Scholar 

  29. Kaiser J. Gene therapy. Side effects sideline hemophilia trial. Science. 2004;304:1423–5.

    Article  PubMed  CAS  Google Scholar 

  30. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.

    Article  PubMed  CAS  Google Scholar 

  31. Matsui H, Shibata M, Brown B, et al. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells. 2007;25:2660–9.

    Article  PubMed  CAS  Google Scholar 

  32. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71–7.

    Article  PubMed  CAS  Google Scholar 

  33. Koppelman SJ, van Hoeij M, Vink T, et al. Requirements of von Willebrand factor to protect factor VIII inactivation by activated protein C. Blood. 1996;87:2292–300.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a Bayer Hemophilia Award.

Conflict of interest

Hideto Matsui is the winner of Bayer Hemophilia Award 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Matsui.

About this article

Cite this article

Matsui, H. Endothelial progenitor cell-based therapy for hemophilia A. Int J Hematol 95, 119–124 (2012). https://doi.org/10.1007/s12185-012-1015-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1015-z

Keywords

Navigation