Skip to main content

Advertisement

Log in

Myelodysplastic syndromes: revisiting the role of the bone marrow microenvironment in disease pathogenesis

  • Progress in Hematology
  • Dysplastic myelopoiesis—from the second JSH International Symposium
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Myelodysplastic syndromes are a heterogeneous group of diseases characterized by ineffective hematopoiesis and the propensity to leukemic transformation. Their pathogenesis is complex and likely depends on interplay between aberrant hematopoietic cells and their microenvironment. How niche cells play a role in disease evolution is poorly defined, but the delineation of the hematopoietic stem cell niche and the ability to interrogate its role in hematopoietic disease in animal models have furthered our insights in recent years. The data support a view in which the microenvironment can play an active role in the evolution of myelodysplasia and myeloproliferative disorders, thus providing further rationale to explore therapeutic targeting of mesenchymal–hematopoietic interactions in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bartl R, Frisch B, Baumgart R. Morphologic classification of the myelodysplastic syndromes (MDS): combined utilization of bone marrow aspirates and trephine biopsies. Leuk Res. 1992;16:15–33.

    Article  PubMed  CAS  Google Scholar 

  2. Herfs M, Hubert P, Delvenne P. Epithelial metaplasia: adult stem cell reprogramming and (pre)neoplastic transformation mediated by inflammation? Trends Mol Med. 2009;15:245–53.

    Article  PubMed  CAS  Google Scholar 

  3. Nimer SD. MDS: a stem cell disorder—but what exactly is wrong with the primitive hematopoietic cells in this disease? Hematology Am Soc Hematol Educ Program 2008:43–51.

  4. Chung YJ, Choi CW, Slape C, Fry T, Aplan PD. Transplantation of a myelodysplastic syndrome by a long-term repopulating hematopoietic cell. Proc Natl Acad Sci USA. 2008;105:14088–93.

    Article  PubMed  CAS  Google Scholar 

  5. Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol. 2011;29:504–15.

    Article  PubMed  CAS  Google Scholar 

  6. Mangi MH, Mufti GJ. Primary myelodysplastic syndromes: diagnostic and prognostic significance of immunohistochemical assessment of bone marrow biopsies. Blood. 1992;79:198–205.

    PubMed  CAS  Google Scholar 

  7. Epling-Burnette PK, List AF. Advancements in the molecular pathogenesis of myelodysplastic syndrome. Curr Opin Hematol. 2009;16:70–6.

    Article  PubMed  CAS  Google Scholar 

  8. Aanei CM, Flandrin P, Eloae FZ, Carasevici E, Guyotat D, Wattel E, Campos L. Intrinsic growth deficiencies of mesenchymal stromal cells in myelodysplastic syndromes. Stem Cells Dev. 2011 (Epub ahead of print).

  9. Li X, Marcondes AM, Gooley TA, Deeg HJ. The helix–loop–helix transcription factor TWIST is dysregulated in myelodysplastic syndromes. Blood. 2010;116:2304–14.

    Article  PubMed  CAS  Google Scholar 

  10. da Costa SV, Roela RA, Junqueira MS, Arantes C, Brentani MM. The role of p38 mitogen-activated protein kinase in serum-induced leukemia inhibitory factor secretion by bone marrow stromal cells from pediatric myelodysplastic syndromes. Leuk Res. 2010;34:507–12.

    Article  PubMed  CAS  Google Scholar 

  11. Navas T, Zhou L, Estes M, Haghnazari E, Nguyen AN, Mo Y, Pahanish P, Mohindru M, Cao T, Higgins LS, Platanias LC, List A, Verma A, Bhagat T, Gajavelli S, Kambhampati S. Inhibition of p38alpha MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone marrow microenvironment. Leuk Lymphoma. 2008;49:1963–75.

    Article  PubMed  CAS  Google Scholar 

  12. Wetzler M, Estrov Z, Talpaz M, Kim KJ, Alphonso M, Srinivasan R, Kurzrock R. Leukemia inhibitory factor in long-term adherent layer cultures: increased levels of bioactive protein in leukemia and modulation by IL-4, IL-1 beta, and TNF-alpha. Cancer Res. 1994;54:1837–42.

    PubMed  CAS  Google Scholar 

  13. Marcondes AM, Mhyre AJ, Stirewalt DL, Kim SH, Dinarello CA, Deeg HJ. Dysregulation of IL-32 in myelodysplastic syndrome and chronic myelomonocytic leukemia modulates apoptosis and impairs NK function. Proc Natl Acad Sci USA. 2008;105:2865–70.

    Article  PubMed  CAS  Google Scholar 

  14. Wetzler M, Kurzrock R, Estrov Z, Estey E, Talpaz M. Cytokine expression in adherent layers from patients with myelodysplastic syndrome and acute myelogenous leukemia. Leuk Res. 1995;19:23–34.

    Article  PubMed  CAS  Google Scholar 

  15. Weimar IS, Voermans C, Bourhis JH, Miranda N, van den Berk PC, Nakamura T, de Gast GC, Gerritsen WR. Hepatocyte growth factor/scatter factor (HGF/SF) affects proliferation and migration of myeloid leukemic cells. Leukemia. 1998;12:1195–203.

    Article  PubMed  CAS  Google Scholar 

  16. Aanei CM, Eloae FZ, Flandrin-Gresta P, Tavernier E, Carasevici E, Guyotat D, Campos L. Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells. Exp Cell Res. 2011;317:2616–29.

    Article  PubMed  CAS  Google Scholar 

  17. Varga G, Kiss J, Varkonyi J, Vas V, Farkas P, Paloczi K, Uher F. Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes. Pathol Oncol Res. 2007;13:311–9.

    Article  PubMed  CAS  Google Scholar 

  18. Aizawa S, Nakano M, Iwase O, Yaguchi M, Hiramoto M, Hoshi H, Nabeshima R, Shima D, Handa H, Toyama K. Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD34-positive cell proliferation and differentiation in vitro. Leuk Res. 1999;23:239–46.

    Article  PubMed  CAS  Google Scholar 

  19. Tennant GB, Walsh V, Truran LN, Edwards P, Mills KI, Burnett AK. Abnormalities of adherent layers grown from bone marrow of patients with myelodysplasia. Br J Haematol. 2000;111:853–62.

    Article  PubMed  CAS  Google Scholar 

  20. Coutinho LH, Geary CG, Chang J, Harrison C, Testa NG. Functional studies of bone marrow haemopoietic and stromal cells in the myelodysplastic syndrome (MDS). Br J Haematol. 1990;75:16–25.

    Article  PubMed  CAS  Google Scholar 

  21. Deeg HJ, Beckham C, Loken MR, Bryant E, Lesnikova M, Shulman HM, Gooley T. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk Lymphoma. 2000;37:405–14.

    PubMed  CAS  Google Scholar 

  22. Sacchetti B, Funari A, Michienzi S, Di CS, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131:324–36.

    Article  PubMed  CAS  Google Scholar 

  23. Ershler WB, Ross J, Finlay JL, Shahidi NT. Bone-marrow microenvironment defect in congenital hypoplastic anemia. N Engl J Med. 1980;302:1321–7.

    Article  PubMed  CAS  Google Scholar 

  24. Matzner Y, Polliack A. Bone marrow curettage in myelodysplastic disorders. A stimulus for regeneration in disturbed hematopoiesis. JAMA. 1981;246:1926–8.

    Article  PubMed  CAS  Google Scholar 

  25. Benito AI, Bryant E, Loken MR, Sale GE, Nash RA, John GM, Deeg HJ. NOD/SCID mice transplanted with marrow from patients with myelodysplastic syndrome (MDS) show long-term propagation of normal but not clonal human precursors. Leuk Res. 2003;27:425–36.

    Article  PubMed  CAS  Google Scholar 

  26. Thanopoulou E, Cashman J, Kakagianne T, Eaves A, Zoumbos N, Eaves C. Engraftment of NOD/SCID-beta2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood. 2004;103:4285–93.

    Article  PubMed  CAS  Google Scholar 

  27. Kerbauy DM, Lesnikov V, Torok-Storb B, Bryant E, Deeg HJ. Engraftment of distinct clonal MDS-derived hematopoietic precursors in NOD/SCID-beta2-microglobulin-deficient mice after intramedullary transplantation of hematopoietic and stromal cells. Blood. 2004;104:2202–3.

    Article  PubMed  CAS  Google Scholar 

  28. Muguruma Y, Matsushita H, Yahata T, Yumino S, Tanaka Y, Miyachi H, Ogawa Y, Kawada H, Ito M, Ando K. Establishment of a xenograft model of human myelodysplastic syndromes. Haematologica. 2011;96:543–51.

    Article  PubMed  Google Scholar 

  29. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31.

    Article  PubMed  CAS  Google Scholar 

  30. Arai F, Suda T. Quiescent stem cells in the niche. In: StemBook [Internet]. Cambridge (MA):Harvard Stem Cell Institute; 2008.

  31. Cheng CL, Hou HA, Jhuang JY, Lin CW, Chen CY, Tang JL, Chou WC, Tseng MH, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Tien HF. High bone marrow angiopoietin-1 expression is an independent poor prognostic factor for survival in patients with myelodysplastic syndromes. Br J Cancer. 2011;105:975–82.

    Article  PubMed  CAS  Google Scholar 

  32. Matsuda M, Morita Y, Hanamoto H, Tatsumi Y, Maeda Y, Kanamaru A. CD34+ progenitors from MDS patients are unresponsive to SDF-1, despite high levels of SDF-1 in bone marrow plasma. Leukemia. 2004;18:1038–40.

    Article  PubMed  CAS  Google Scholar 

  33. Lopez I, Guerci A, Bouscary D, Lacombe C, Botella A, Melle J, Dreyfus F, Fontenay-Roupie M. Elevated thrombopoietin serum concentrations in myelodysplasias. Platelets. 1998;9:287–90.

    Article  PubMed  CAS  Google Scholar 

  34. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.

    Article  PubMed  CAS  Google Scholar 

  36. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–88.

    Article  PubMed  CAS  Google Scholar 

  37. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33:387–99.

    Article  PubMed  CAS  Google Scholar 

  38. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, Ebert BL, Al-Shahrour F, Hasserjian RP, Scadden EO, Aung Z, Matza M, Merkenschlager M, Lin C, Rommens JM, Scadden DT. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464(7290):852–7.

    Article  PubMed  CAS  Google Scholar 

  39. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

    Article  PubMed  CAS  Google Scholar 

  40. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–21.

    Article  PubMed  CAS  Google Scholar 

  41. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M, Witte L, May C, Shawber C, Kimura Y, Kitajewski J, Rosenwaks Z, Bernstein ID, Rafii S. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell. 2010;6:251–64.

    Article  PubMed  CAS  Google Scholar 

  42. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460:259–63.

    Article  PubMed  CAS  Google Scholar 

  43. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H. Nonmyelinating schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147:1146–58.

    Article  PubMed  CAS  Google Scholar 

  44. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA, Westmoreland SV, Chambon P, Scadden DT, Purton LE. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell. 2007;129:1097–110.

    Article  PubMed  CAS  Google Scholar 

  45. Kim YW, Koo BK, Jeong HW, Yoon MJ, Song R, Shin J, Jeong DC, Kim SH, Kong YY. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood. 2008;112:4628–38.

    Article  PubMed  CAS  Google Scholar 

  46. Rupec RA, Jundt F, Rebholz B, Eckelt B, Weindl G, Herzinger T, Flaig MJ, Moosmann S, Plewig G, Dorken B, Forster I, Huss R, Pfeffer K. Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity. 2005;22:479–91.

    Article  PubMed  CAS  Google Scholar 

  47. Zimmer SN, Zhou Q, Zhou T, Cheng Z, bboud-Werner SL, Horn D, Lecocke M, White R, Krivtsov AV, Armstrong SA, Kung AL, Livingston DM, Rebel VI. Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis. Blood. 2011;118:69–79.

    Article  PubMed  CAS  Google Scholar 

  48. Roelfsema JH, Peters DJ. Rubinstein–Taybi syndrome: clinical and molecular overview. Expert Rev Mol Med. 2007;9:1–16.

    Article  PubMed  Google Scholar 

  49. Yao L, Yokota T, Xia L, Kincade PW, McEver RP. Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood. 2005;106:4093–101.

    Article  PubMed  CAS  Google Scholar 

  50. Maes C, Goossens S, Bartunkova S, Drogat B, Coenegrachts L, Stockmans I, Moermans K, Nyabi O, Haigh K, Naessens M, Haenebalcke L, Tuckermann JP, Tjwa M, Carmeliet P, Mandic V, David JP, Behrens A, Nagy A, Carmeliet G, Haigh JJ. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J. 2010;29:424–41.

    Article  PubMed  CAS  Google Scholar 

  51. Raaijmakers M. Niche contributions to oncogenesis: emerging concepts and implications for the hematopoietic system. Haematologica. 2011;96(7):1041–8.

    Article  PubMed  Google Scholar 

  52. Lane SW, De VS, Alexander KA, Karaman R, Milsom MD, Dorrance AM, Purdon A, Louis L, Bouxsein ML, Williams DA. Rac signaling in osteoblastic cells is required for normal bone development but is dispensable for hematopoietic development. Blood. 2011.

  53. Lepperdinger G. Inflammation and mesenchymal stem cell aging. Curr Opin Immunol. 2011;23:518–24.

    Article  PubMed  CAS  Google Scholar 

  54. Flores-Figueroa E, rana-Trejo RM, Gutierrez-Espindola G, Perez-Cabrera A, Mayani H. Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res. 2005;29:215–24.

    Article  PubMed  CAS  Google Scholar 

  55. Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schumann E, Thiel E, Blau IW. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol. 2007;35:221–9.

    Article  PubMed  CAS  Google Scholar 

  56. Ramakrishnan A, Awaya N, Bryant E, Torok-Storb B. The stromal component of the marrow microenvironment is not derived from the malignant clone in MDS. Blood. 2006;108:772–3.

    Article  PubMed  CAS  Google Scholar 

  57. Lopez-Villar O, Garcia JL, Sanchez-Guijo FM, Robledo C, Villaron EM, Hernandez-Campo P, Lopez-Holgado N, ez-Campelo M, Barbado MV, Perez-Simon JA, Hernandez-Rivas JM, San-Miguel JF, del Canizo MC. Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia. 2009;23:664–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc H. G. P. Raaijmakers.

About this article

Cite this article

Raaijmakers, M.H.G.P. Myelodysplastic syndromes: revisiting the role of the bone marrow microenvironment in disease pathogenesis. Int J Hematol 95, 17–25 (2012). https://doi.org/10.1007/s12185-011-1001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-1001-x

Keywords

Navigation