Skip to main content
Log in

The effect of iron overload and chelation on erythroid differentiation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

We investigated the mechanisms of hematopoietic disorders caused by iron overload and chelation, in particular, the inhibition of erythroblast differentiation. Murine c-kit+ progenitor cells or human CD34+ peripheral blood hematopoietic progenitors were differentiated in vitro to the erythroid lineage with free iron and/or an iron chelator. Under iron overload, formation of erythroid burst-forming unit colonies and differentiation to mature erythroblasts were significantly suppressed; these effects were canceled by iron chelation with deferoxamine (DFO). Moreover, excessive iron burden promoted apoptosis in immature erythroblasts by elevating intracellular reactive oxygen species (ROS). Interestingly, both DFO and a potent anti-oxidant agent reduced intracellular ROS levels and suppressed apoptosis, thus restoring differentiation to mature erythroblasts. Accordingly, intracellular ROS may represent a new therapeutic target in the treatment of iron overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Takatoku M, Uchiyama T, Okamoto S, Kanakura Y, Sawada K, Tomonaga M, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality. Eur J Haematol. 2007;78:487–94.

    Article  PubMed  CAS  Google Scholar 

  2. Cazzola M, Malcovati L. Myelodysplastic syndromes—coping with ineffective hematopoiesis. N Engl J Med. 2005;352:536–8.

    Article  PubMed  CAS  Google Scholar 

  3. Suzuki T, Tomonaga M, Miyazaki Y, Nakao S, Ohyashiki K, Matsumura I, et al. Japanese epidemiological survey with consensus statement on Japanese guidelines for treatment of iron overload in bone marrow failure syndromes. Int J Hematol. 2008;88:30–5.

    Article  PubMed  CAS  Google Scholar 

  4. Cortelezzi A, Cattaneo C, Cristiani S, Duca L, Sarina B, Deliliers GL, et al. Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis? Hematol J. 2000;1:153–8.

    Article  PubMed  CAS  Google Scholar 

  5. Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. Eur J Haematol. 2007;79:463–7.

    Article  PubMed  Google Scholar 

  6. Weintraub LR, Conrad ME, Crosby WH. Iron-loading anemia. Treatment with repeated phlebotomies and pyridoxine. N Engl J Med. 1966;275:169–76.

    Article  PubMed  CAS  Google Scholar 

  7. Messa E, Cilloni D, Messa F, Arruga F, Roetto A, Saglio G. Deferasirox treatment improved the hemoglobin level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary myelofibrosis. Acta Haematol. 2008;120:70–4.

    Article  PubMed  CAS  Google Scholar 

  8. Malcovati L, Porta MG, Pascutto C, Invernizzi R, Boni M, Travaglino E, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23:7594–603.

    Article  PubMed  Google Scholar 

  9. Metzgeroth G, Dinter D, Schultheis B, Dorn-Beineke A, Lutz K, Leismann O, et al. Deferasirox in MDS patients with transfusion-caused iron overload—a phase-II study. Ann Hematol. 2009;88:301–10.

    Article  PubMed  CAS  Google Scholar 

  10. Jensen PD, Heickendorff L, Pedersen B, Bendix-Hansen K, Jensen FT, Christensen T, et al. The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br J Haematol. 1996;94:288–99.

    Article  PubMed  CAS  Google Scholar 

  11. Di Tucci AA, Murru R, Alberti D, Rabault B, Deplano S, Angelucci E. Correction of anemia in a transfusion-dependent patient with primary myelofibrosis receiving iron chelation therapy with deferasirox (Exjade, ICL670). Eur J Haematol. 2007;78:540–2.

    Article  PubMed  CAS  Google Scholar 

  12. Zhu H, Bannenberg GL, Moldéus P, Shertzer HG. Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol. 1994;68:582–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ohashi T, Kakimoto K, Sokawa Y, Taketani S. Semi-quantitative estimation of heme/hemoprotein with dichlorodihydrofluorescein diacetate. Anal Biochem. 2002;308:392–5.

    Article  PubMed  CAS  Google Scholar 

  14. Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S. Rapid oxidation of dichlorodihydrofluorescein with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett. 2002;511:21–7.

    Article  PubMed  CAS  Google Scholar 

  15. de Jong K, Emerson RK, Butler J, Bastacky J, Mohandas N, Kuypers FA. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood. 2001;98:1577–84.

    Article  PubMed  Google Scholar 

  16. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood. 2001;98:3261–73.

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M. Suppression of Fas–FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 2006;108:123–33.

    Article  PubMed  CAS  Google Scholar 

  18. Juvonen E, Sahlstedt L, Parkkinen J, Ruutu T. Inhibition of erythroid and granulocyte-macrophage colony formation by non-transferrin-bound iron in vitro: protective effect of apotransferrin. Eur J Haematol. 2007;79:126–31.

    Article  PubMed  CAS  Google Scholar 

  19. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37:1264–9.

    Article  PubMed  CAS  Google Scholar 

  20. Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25.

    PubMed  CAS  Google Scholar 

  21. Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117:285–97.

    Article  PubMed  CAS  Google Scholar 

  22. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11:1373–414.

    Article  PubMed  CAS  Google Scholar 

  23. Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008;77:755–76.

    Article  PubMed  CAS  Google Scholar 

  24. Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703:93–109.

    PubMed  CAS  Google Scholar 

  25. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci. 2001;26:61–6.

    Article  PubMed  CAS  Google Scholar 

  26. Breckenridge DG, Xue D. Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol. 2004;16:647–52.

    Article  PubMed  CAS  Google Scholar 

  27. Brown GC, Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta. 2008;1777:877–81.

    Article  PubMed  CAS  Google Scholar 

  28. Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem. 2000;275:37159–66.

    Article  PubMed  CAS  Google Scholar 

  29. Pan Z, Voehringer DW, Meyn RE. Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free system. Cell Death Differ. 1999;6:683–8.

    Article  PubMed  CAS  Google Scholar 

  30. Borutaite V, Brown GC. Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 2001;500:114–8.

    Article  PubMed  CAS  Google Scholar 

  31. Suto D, Sato K, Ohba Y, Yoshimura T, Fujii J. Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. Biochem J. 2005;392:399–406.

    Article  PubMed  CAS  Google Scholar 

  32. al-Refaie FN, Wickens DG, Wonke B, Kontoghiorghes GJ, Hoffbrand AV. Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and L1. Br J Haematol. 1992;82:431–6.

    Article  PubMed  CAS  Google Scholar 

  33. Marsh JH, Hundert M, Schulman P. Deferoxamine-induced restoration of haematopoiesis in myelofibrosis secondary to myelodysplasia. Br J Haematol. 1990;76:148–9.

    Article  PubMed  CAS  Google Scholar 

  34. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  PubMed  CAS  Google Scholar 

  35. van de Loosdrecht AA, Brada SJ, Blom NR, Hendriks DW, Smit JW, van den Berg E, et al. Mitochondrial disruption and limited apoptosis of erythroblasts are associated with high risk myelodysplasia. An ultrastructural analysis. Leuk Res. 2001;25:385–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mineo Kurokawa.

About this article

Cite this article

Taoka, K., Kumano, K., Nakamura, F. et al. The effect of iron overload and chelation on erythroid differentiation. Int J Hematol 95, 149–159 (2012). https://doi.org/10.1007/s12185-011-0988-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-0988-3

Keywords

Navigation