Skip to main content

Advertisement

Log in

Biological aspects of angiogenesis in multiple myeloma

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant expansion of malignant plasma cells within the bone marrow (BM). One of the hallmarks of this disease is the close interaction between myeloma cells and neighboring cells within the BM. Angiogenesis, through the activation of endothelial cells, plays an essential role in MM biology. In the current review, we describe the angiogenesis process in MM by identifying the interacting cells, the pro- and anti-angiogenic cytokines modulated, and the extracellular matrix degrading proteases liable to participate in the pathophysiology. Finally, we highlight the impact of hypoxia (through hypoxia-inducible factor-1) and constitutive activation of nuclear factor-κB in this tumor-induced neo-vascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bray F, et al. Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer. 2002;38(1):99–166.

    Article  PubMed  CAS  Google Scholar 

  2. Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance. Br J Haematol. 2006;134(6):573–89.

    Article  PubMed  CAS  Google Scholar 

  3. Caers J, et al. Unraveling the biology of multiple myeloma disease: cancer stem cells, acquired intracellular changes and interactions with the surrounding micro-environment. Bull Cancer. 2008;95(3):301–13.

    PubMed  CAS  Google Scholar 

  4. Mattioli M, et al. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene. 2005;24(15):2461–73.

    Article  PubMed  CAS  Google Scholar 

  5. Kyle RA, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346(8):564–9.

    Article  PubMed  Google Scholar 

  6. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    Article  PubMed  CAS  Google Scholar 

  7. Jakob C, et al. Angiogenesis in multiple myeloma. Eur J Cancer. 2006;42(11):1581–90.

    Article  PubMed  CAS  Google Scholar 

  8. Rajkumar SV, et al. Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia. 1999;13(3):469–72.

    Article  PubMed  CAS  Google Scholar 

  9. Vacca A, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol. 1994;87(3):503–8.

    Article  PubMed  CAS  Google Scholar 

  10. Laroche M, et al. Increased vascularization in myeloma. Eur J Haematol. 2001;66(2):89–93.

    Article  PubMed  CAS  Google Scholar 

  11. Asosingh K, et al. Angiogenic switch during 5T2MM murine myeloma tumorigenesis: role of CD45 heterogeneity. Blood. 2004;103(8):3131–7.

    Article  PubMed  CAS  Google Scholar 

  12. Perez-Atayde AR, et al. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol. 1997;150(3):815–21.

    PubMed  CAS  Google Scholar 

  13. Sezer O, et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol. 2000;79(10):574–7.

    Article  PubMed  CAS  Google Scholar 

  14. Rajkumar SV, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res. 2000;6(8):3111–6.

    PubMed  CAS  Google Scholar 

  15. Rajkumar SV, et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res. 2002;8(7):2210–6.

    PubMed  Google Scholar 

  16. Alexandrakis MG, et al. The relation between bone marrow angiogenesis and the proliferation index Ki-67 in multiple myeloma. J Clin Pathol. 2004;57(8):856–60.

    Article  PubMed  CAS  Google Scholar 

  17. Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009;19(5):329–37.

    Article  PubMed  CAS  Google Scholar 

  18. Kumar S, et al. Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood. 2004;104(4):1159–65.

    Article  PubMed  CAS  Google Scholar 

  19. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  PubMed  CAS  Google Scholar 

  20. Pour L, et al. Levels of angiogenic factors in patients with multiple myeloma correlate with treatment response. Ann Hematol. 2010;89(4):385–9.

    Article  PubMed  CAS  Google Scholar 

  21. Fujii R, Yaccoby S, Epstein J. Control of myeloma growth with the anti-angiogenic agent endostatin. Blood. 2002;96:360a.

    Google Scholar 

  22. Urbanska-Rys H, Robak T. High serum level of endostatin in multiple myeloma at diagnosis but not in the plateau phase after treatment. Mediators Inflamm. 2003;12(4):229–35.

    Article  PubMed  CAS  Google Scholar 

  23. De Raeve H, et al. Angiogenesis and the role of bone marrow endothelial cells in haematological malignancies. Histol Histopathol. 2004;19(3):935–50.

    PubMed  Google Scholar 

  24. Ribatti D. The discovery of endothelial progenitor cells. An historical review. Leuk Res. 2007;31(4):439–44.

    Article  PubMed  CAS  Google Scholar 

  25. Vacca A, et al. Endothelial cells in the bone marrow of patients with multiple myeloma. Blood. 2003;102(9):3340–8.

    Article  PubMed  CAS  Google Scholar 

  26. Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  PubMed  CAS  Google Scholar 

  27. Rafii S. Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest. 2000;105(1):17–9.

    Article  PubMed  CAS  Google Scholar 

  28. Suda T, Takakura N, Oike Y. Hematopoiesis and angiogenesis. Int J Hematol. 2000;71(2):99–107.

    PubMed  CAS  Google Scholar 

  29. Lyden D, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7(11):1194–201.

    Article  PubMed  CAS  Google Scholar 

  30. Yin AH, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.

    PubMed  CAS  Google Scholar 

  31. Miraglia S, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90(12):5013–21.

    PubMed  CAS  Google Scholar 

  32. Zhang H, et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood. 2005;105(8):3286–94.

    Article  PubMed  CAS  Google Scholar 

  33. Dominici M, et al. Angiogenesis in multiple myeloma: correlation between in vitro endothelial colonies growth (CFU-En) and clinical–biological features. Leukemia. 2001;15(1):171–6.

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Zhang Z, Yao C. Angiogenic activity of mesenchymal stem cells in multiple myeloma. Cancer Invest. 2011;29(1):37–41.

    Article  PubMed  CAS  Google Scholar 

  35. Scavelli C, et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene. 2008;27(5):663–74.

    Article  PubMed  CAS  Google Scholar 

  36. Caers J, et al. Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia. 2007;21(7):1580–4.

    Article  PubMed  CAS  Google Scholar 

  37. Dankbar B, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor–stromal cell interactions in multiple myeloma. Blood. 2000;95(8):2630–6.

    PubMed  CAS  Google Scholar 

  38. Barille S, et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood. 1997;90(4):1649–55.

    PubMed  CAS  Google Scholar 

  39. Urashima M, et al. The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood. 1997;90(2):754–65.

    PubMed  CAS  Google Scholar 

  40. Borset M, et al. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood. 1996;88(10):3998–4004.

    PubMed  CAS  Google Scholar 

  41. Hose D, et al. Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009;114(1):128–43.

    Article  PubMed  CAS  Google Scholar 

  42. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005;9(4):777–94.

    Article  PubMed  CAS  Google Scholar 

  43. Vacca A, et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica. 2003;88(2):176–85.

    PubMed  CAS  Google Scholar 

  44. Podar K, et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001;98(2):428–35.

    Article  PubMed  CAS  Google Scholar 

  45. Uchiyama H, et al. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood. 1993;82(12):3712–20.

    PubMed  CAS  Google Scholar 

  46. Chauhan D, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87(3):1104–12.

    PubMed  CAS  Google Scholar 

  47. Kim I, et al. Cell surface expression and functional significance of adhesion molecules on human myeloma-derived cell lines. Br J Haematol. 1994;87(3):483–93.

    Article  PubMed  CAS  Google Scholar 

  48. Ribatti D, Nico B, Vacca A. Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene. 2006;25(31):4257–66.

    Article  PubMed  CAS  Google Scholar 

  49. Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.

    Article  PubMed  CAS  Google Scholar 

  50. Maulik G, et al. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev. 2002;13(1):41–59.

    Article  PubMed  CAS  Google Scholar 

  51. Hose D, et al. Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood. 2009;113(18):4331–40.

    Article  PubMed  CAS  Google Scholar 

  52. Seidel C, et al. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood. 1998;91(3):806–12.

    PubMed  CAS  Google Scholar 

  53. Derksen PW, et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia. 2003;17(4):764–74.

    Article  PubMed  CAS  Google Scholar 

  54. Andersen NF, et al. Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol. 2005;128(2):210–7.

    Article  PubMed  CAS  Google Scholar 

  55. Alexandrakis MG, et al. Elevated serum concentration of hepatocyte growth factor in patients with multiple myeloma: correlation with markers of disease activity. Am J Hematol. 2003;72(4):229–33.

    Article  PubMed  CAS  Google Scholar 

  56. Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 1992;59:115–65.

    Article  PubMed  CAS  Google Scholar 

  57. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993;73(1):161–95.

    PubMed  CAS  Google Scholar 

  58. Ribatti D, et al. In vivo angiogenic activity of urokinase: role of endogenous fibroblast growth factor-2. J Cell Sci. 1999;112(Pt 23):4213–21.

    PubMed  CAS  Google Scholar 

  59. Vacca A, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood. 1999;93(9):3064–73.

    PubMed  CAS  Google Scholar 

  60. Bisping G, et al. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood. 2003;101(7):2775–83.

    Article  PubMed  CAS  Google Scholar 

  61. Noel A, Jost M, Maquoi E. Matrix metalloproteinases at cancer tumor–host interface. Semin Cell Dev Biol. 2008;19(1):52–60.

    Article  PubMed  CAS  Google Scholar 

  62. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3(6):422–33.

    Article  PubMed  CAS  Google Scholar 

  63. Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005;65(10):3967–79.

    Article  PubMed  CAS  Google Scholar 

  64. Monteiro Torres PH, Limaverde Soares Costa Sousa G, Pascutti PG. Structural analysis of the N-terminal fragment of the antiangiogenic protein endostatin: a molecular dynamics study. Proteins. 2011;79(9):2684–92.

    Google Scholar 

  65. Van Valckenborgh E, et al. Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer. 2002;101(6):512–8.

    Article  PubMed  CAS  Google Scholar 

  66. Vanderkerken K, et al. Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev. 2003;194:196–206.

    Article  PubMed  CAS  Google Scholar 

  67. Alexandrakis MG, et al. Relationship between serum levels of vascular endothelial growth factor, hepatocyte growth factor and matrix metalloproteinase-9 with biochemical markers of bone disease in multiple myeloma. Clin Chim Acta. 2007;379(1–2):31–5.

    Article  PubMed  CAS  Google Scholar 

  68. Rocks N, et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008;90(2):369–79.

    Article  PubMed  CAS  Google Scholar 

  69. Bret C, et al. Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp Hematol. 2011;39:546–57.

    Article  PubMed  CAS  Google Scholar 

  70. Karadag A, Zhou M, Croucher PI. ADAM-9 (MDC-9/meltrin-gamma), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell-induced interleukin-6 production in osteoblasts by direct interaction with the alpha(v)beta5 integrin. Blood. 2006;107(8):3271–8.

    Article  PubMed  CAS  Google Scholar 

  71. Hideshima T, et al. Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol. 2001;28(6):607–12.

    Article  PubMed  CAS  Google Scholar 

  72. Giuliani N, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 2002;100(13):4615–21.

    Article  PubMed  CAS  Google Scholar 

  73. Martin SK, et al. Tumor angiogenesis is associated with plasma levels of stromal-derived factor-1alpha in patients with multiple myeloma. Clin Cancer Res. 2006;12(23):6973–7.

    Article  PubMed  CAS  Google Scholar 

  74. Terpos E, et al. Significance of macrophage inflammatory protein-1 alpha (MIP-1alpha) in multiple myeloma. Leuk Lymphoma. 2005;46(12):1699–707.

    Article  PubMed  CAS  Google Scholar 

  75. Fisher LW, et al. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem. 1987;262(20):9702–8.

    PubMed  CAS  Google Scholar 

  76. Caers J, et al. The involvement of osteopontin and its receptors in multiple myeloma cell survival, migration and invasion in the murine 5T33MM model. Br J Haematol. 2006;132(4):469–77.

    PubMed  CAS  Google Scholar 

  77. Colla S, et al. Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia. 2005;19(12):2166–76.

    Article  PubMed  CAS  Google Scholar 

  78. Brahimi-Horn MC, Pouyssegur J. Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol. 2007;73(3):450–7.

    Article  PubMed  CAS  Google Scholar 

  79. Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 2002;16(10):1151–62.

    Article  PubMed  CAS  Google Scholar 

  80. Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15(4):678–85.

    Article  PubMed  CAS  Google Scholar 

  81. Wang GL, et al. Hypoxia-inducible factor 1 is a basic helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92(12):5510–4.

    Article  PubMed  CAS  Google Scholar 

  82. Yoo YG, et al. An essential role of the HIF-1alpha-c-Myc axis in malignant progression. Ann NY Acad Sci. 2009;1177:198–204.

    Article  PubMed  CAS  Google Scholar 

  83. Zundel W, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14(4):391–6.

    PubMed  CAS  Google Scholar 

  84. Hu Y, et al. Inhibition of hypoxia-inducible factor-1 function enhances the sensitivity of multiple myeloma cells to melphalan. Mol Cancer Ther. 2009;8(8):2329–38.

    Article  PubMed  CAS  Google Scholar 

  85. Harrison JS, et al. Oxygen saturation in the bone marrow of healthy volunteers. Blood. 2002;99(1):394.

    Article  PubMed  CAS  Google Scholar 

  86. Colla S, et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1alpha overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia. 2010;24(11):1967–70.

    Article  PubMed  CAS  Google Scholar 

  87. Asosingh K, et al. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica. 2005;90(6):810–7.

    PubMed  CAS  Google Scholar 

  88. Zannettino AC, et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res. 2005;65(5):1700–9.

    Article  PubMed  CAS  Google Scholar 

  89. Martin SK, et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica. 2010;95(5):776–84.

    Article  PubMed  CAS  Google Scholar 

  90. Maxwell PH, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

    Article  PubMed  CAS  Google Scholar 

  91. Hatzimichael E, et al. Von Hippel–Lindau methylation status in patients with multiple myeloma: a potential predictive factor for the development of bone disease. Clin Lymphoma Myeloma. 2009;9(3):239–42.

    Article  PubMed  CAS  Google Scholar 

  92. Eischen CM, et al. Disruption of the ARF-Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999;13(20):2658–69.

    Article  PubMed  CAS  Google Scholar 

  93. Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–33.

    Article  PubMed  CAS  Google Scholar 

  94. Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA. 2002;99(9):6274–9.

    Article  PubMed  CAS  Google Scholar 

  95. Zhang J, et al. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res. 2009;69(12):5082–90.

    Article  PubMed  CAS  Google Scholar 

  96. Koong AC, et al. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res. 1994;54(20):5273–9.

    PubMed  CAS  Google Scholar 

  97. Karashima T, et al. Nuclear factor-kappaB mediates angiogenesis and metastasis of human bladder cancer through the regulation of interleukin-8. Clin Cancer Res. 2003;9(7):2786–97.

    PubMed  CAS  Google Scholar 

  98. Annunziata CM, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12(2):115–30.

    Article  PubMed  CAS  Google Scholar 

  99. Keats JJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12(2):131–44.

    Article  PubMed  CAS  Google Scholar 

  100. van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 2008;412(3):477–84.

    Article  PubMed  Google Scholar 

  101. Jung YJ, et al. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 2003;17(14):2115–7.

    PubMed  CAS  Google Scholar 

  102. Qiao Q, et al. NF-kappaB mediates aberrant activation of HIF-1 in malignant lymphoma. Exp Hematol. 2010;38(12):1199–208.

    Article  PubMed  CAS  Google Scholar 

  103. Nam SY, et al. A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-kappaB promotes gastric tumour growth and angiogenesis. Br J Cancer. 2011;104(1):166–74.

    Article  PubMed  CAS  Google Scholar 

  104. Kwon HC, et al. Clinicopathological significance of nuclear factor-kappa B, HIF-1 alpha, and vascular endothelial growth factor expression in stage III colorectal cancer. Cancer Sci. 2010;101(6):1557–61.

    Article  PubMed  CAS  Google Scholar 

  105. D’Amato RJ, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91(9):4082–5.

    Article  PubMed  Google Scholar 

  106. Vacca A, et al. Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(23):5334–46.

    Article  CAS  Google Scholar 

  107. Rajkumar SV, et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood. 2005;106(13):4050–3.

    Article  PubMed  CAS  Google Scholar 

  108. Richardson PG, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood. 2006;108(10):3458–64.

    Article  PubMed  CAS  Google Scholar 

  109. Lentzsch S, et al. Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia. 2003;17(1):41–4.

    Article  PubMed  CAS  Google Scholar 

  110. Lu L, et al. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res. 2009;77(2):78–86.

    Article  PubMed  CAS  Google Scholar 

  111. De Luisi A, et al. Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma. Clin Cancer Res. 2011;17(7):1935–46.

    Article  PubMed  CAS  Google Scholar 

  112. Mitra-Kaushik S, et al. Effects of the proteasome inhibitor PS-341 on tumor growth in HTLV-1 Tax transgenic mice and Tax tumor transplants. Blood. 2004;104(3):802–9.

    Article  PubMed  CAS  Google Scholar 

  113. Roccaro AM, et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006;66(1):184–91.

    Article  PubMed  CAS  Google Scholar 

  114. De Vos J, et al. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene. 2002;21(44):6848–57.

    Article  PubMed  CAS  Google Scholar 

  115. Munshi NC, et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood. 2004;103(5):1799–806.

    Article  PubMed  CAS  Google Scholar 

  116. Bao H, et al. Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma. Int J Hematol. 2009;90(2):177–85.

    Article  PubMed  CAS  Google Scholar 

  117. Seckinger A, et al. Bone morphogenic protein 6: a member of a novel class of prognostic factors expressed by normal and malignant plasma cells inhibiting proliferation and angiogenesis. Oncogene. 2009;28(44):3866–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E. Otjacques and M. Binsfeld are Télévie Research Fellows at the National Fund for Scientific Research (FNRS) Belgium. This work was supported by a grant from FNRS and the University of Liège.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Caers.

About this article

Cite this article

Otjacques, E., Binsfeld, M., Noel, A. et al. Biological aspects of angiogenesis in multiple myeloma. Int J Hematol 94, 505–518 (2011). https://doi.org/10.1007/s12185-011-0963-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-0963-z

Keywords

Navigation