Skip to main content

Advertisement

Log in

Self-renewal related signaling in myeloid leukemia stem cells

  • Progress in Hematology
  • Signaling and transcription in the development of leukemia
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

A key characteristic of hematopoietic stem cells (HSC) is the ability to self-renew. Several genes and signaling pathways control the fine balance between self-renewal and differentiation in HSC and potentially also in leukemic stem cells. Besides pathways such as Wnt signaling, Hedgehog signaling and Notch signaling, transcription factors (FoxOs) and cell fate determinants may also play a role in stem cells. While some of these pathways seem to be dispensable for maintenance of adult HSC, there may be a distinct requirement in leukemia stem cells for leukemic self-renewal. Here we will focus on self-renewal related signaling in myeloid leukemia stem cells and its therapeutic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lapidot T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  3. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5(7):738–43.

    Article  CAS  PubMed  Google Scholar 

  4. Cozzio A, et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003;17(24):3029–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huntly BJ, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6(6):587–96.

    Article  CAS  PubMed  Google Scholar 

  6. Krivtsov AV, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442(7104):818–22.

    Article  CAS  PubMed  Google Scholar 

  7. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10(4):257–68.

    Article  CAS  PubMed  Google Scholar 

  8. Lowenberg B, et al. Mitoxantrone versus daunorubicin in induction-consolidation chemotherapy—the value of low-dose cytarabine for maintenance of remission, and an assessment of prognostic factors in acute myeloid leukemia in the elderly: final report. European Organization for the Research and Treatment of Cancer and the Dutch-Belgian Hemato-Oncology Cooperative Hovon Group. J Clin Oncol. 1998;16(3):872–81.

    Article  CAS  PubMed  Google Scholar 

  9. Stone RM, et al. Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. N Engl J Med. 1995;332(25):1671–7.

    Article  CAS  PubMed  Google Scholar 

  10. Mayer RJ, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med. 1994;331(14):896–903.

    Article  CAS  PubMed  Google Scholar 

  11. Cortes J, et al. Front-line and salvage therapies with tyrosine kinase inhibitors and other treatments in chronic myeloid leukemia. J Clin Oncol. 2011;29(5):524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahon FX, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35.

    Article  CAS  PubMed  Google Scholar 

  13. Rousselot P, et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood. 2007;109(1):58–60.

    Article  CAS  PubMed  Google Scholar 

  14. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.

    Article  CAS  PubMed  Google Scholar 

  15. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287(5785):795–801.

    Article  CAS  PubMed  Google Scholar 

  16. Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature. 2005;437(7060):894–7.

    Article  CAS  PubMed  Google Scholar 

  17. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004;432(7015):324–31.

    Article  CAS  PubMed  Google Scholar 

  18. Lee J, et al. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development. 1997;124(13):2537–52.

    CAS  PubMed  Google Scholar 

  19. Ikram MS, et al. GLI2 is expressed in normal human epidermis and BCC and induces GLI1 expression by binding to its promoter. J Invest Dermatol. 2004;122(6):1503–9.

    Article  CAS  PubMed  Google Scholar 

  20. Teglund S, Toftgard R. Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta. 2010;1805(2):181–208.

    CAS  PubMed  Google Scholar 

  21. Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell. 2001;106(2):781–92.

    Article  CAS  PubMed  Google Scholar 

  22. Dierks C, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 2008;14(3):238–49.

    Article  CAS  PubMed  Google Scholar 

  23. Gao J, et al. Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell. 2009;4(6):548–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hofmann I, et al. Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell. 2009;4(6):559–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao C, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458(7239):776–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Irvine DA, et al. Combination of Hedgehog pathway inhibitor LDE225 and Nilotinib eliminates chronic myeloid leukemia stem and progenitor cells. Blood (ASH). 2009 (abstract no. 1428).

  27. Zhang B, et al. Inhibition of chronic myeloid leukemia stem cells by the combination of the Hoedgehog pathway inhibitor LDE225 with Nilotinib. Blood (ASH). 2010 (abstract no. 514).

  28. Schairer A, et al. Human blast crisis leukemia stem cell inhibition with a novel smoothened antagonist. Blood (ASH). 2010 (abstract no. 1223).

  29. Behrens J, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280(5363):596–9.

    Article  CAS  PubMed  Google Scholar 

  30. Rubinfeld B, et al. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272(5264):1023–6.

    Article  CAS  PubMed  Google Scholar 

  31. Tamai K, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000;407(6803):530–5.

    Article  CAS  PubMed  Google Scholar 

  32. Mao J, et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell. 2001;7(4):801–9.

    Article  CAS  PubMed  Google Scholar 

  33. Mao B, et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature. 2001;411(6835):321–5.

    Article  CAS  PubMed  Google Scholar 

  34. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haegel H, et al. Lack of beta-catenin affects mouse development at gastrulation. Development. 1995;121(11):3529–37.

    CAS  PubMed  Google Scholar 

  36. Fleming HE, et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. 2008;2(3):274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao C, et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12(6):528–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koch U, et al. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood. 2008;111(1):160–4.

    Article  CAS  PubMed  Google Scholar 

  39. Hu Y, et al. beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia. 2009;23(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  40. Heidel FH, et al. Beta-catenin (Ctnnb1) suppression targets imatinib resistant leukemia stem cells in mice with BCR-ABL induced myeloproliferative disease. Blood (ASH). 2010 (annual meeting abstracts).

  41. Jamieson CH, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67.

    Article  CAS  PubMed  Google Scholar 

  42. Abrahamsson AE, et al. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA. 2009;106(10):3925–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327(5973):1650–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yeung J, et al. beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010;18(6):606–18.

    Article  CAS  PubMed  Google Scholar 

  45. North TE, et al. Hematopoietic stem cell development is dependent on blood flow. Cell. 2009;137(4):736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goessling W, et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell. 2009;136(6):1136–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eaves CJ, Humphries RK. Acute myeloid leukemia and the Wnt pathway. N Engl J Med. 2010;362(24):2326–7.

    Article  CAS  PubMed  Google Scholar 

  48. Tothova Z, Gilliland DG. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell. 2007;1(2):140–52.

    Article  CAS  PubMed  Google Scholar 

  49. Tothova Z, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007;128(2):325–39.

    Article  CAS  PubMed  Google Scholar 

  50. Miyamoto K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1(1):101–12.

    Article  CAS  PubMed  Google Scholar 

  51. Naka K, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463(7281):676–80.

    Article  CAS  PubMed  Google Scholar 

  52. Sykes SM, et al. The AKT/FOXO signaling pathway is required for the maintenance of acute myeloid leukemia. Cell. 2011 (in press).

  53. Duncan AW, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005;6(3):314–22.

    Article  CAS  PubMed  Google Scholar 

  54. Wu M, et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell. 2007;1(5):541–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Allman D, Aster JC, Pear WS. Notch signaling in hematopoiesis and early lymphocyte development. Immunol Rev. 2002;187:75–86.

    Article  CAS  PubMed  Google Scholar 

  56. Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling. Science. 1995;268(5208):225–32.

    Article  CAS  PubMed  Google Scholar 

  57. Wu L, et al. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 2000;26(4):484–9.

    Article  CAS  PubMed  Google Scholar 

  58. Varnum-Finney B, et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J Cell Sci. 2000;113(Pt 23):4313–8.

    CAS  PubMed  Google Scholar 

  59. Chen PM, et al. Down-regulation of Notch-1 expression decreases PU.1-mediated myeloid differentiation signaling in acute myeloid leukemia. Int J Oncol. 2008;32(6):1335–41.

    CAS  PubMed  Google Scholar 

  60. Nakahara F, et al. Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood. 2010;115(14):2872–81.

    Article  CAS  PubMed  Google Scholar 

  61. Klinakis A, et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature. 2011;473(7346):230–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hope KJ, et al. An RNAi screen identifies Msi2 and Prox1 as having opposite roles in the regulation of hematopoietic stem cell activity. Cell Stem Cell. 2010;7(1):101–13.

    Article  CAS  PubMed  Google Scholar 

  63. Ito T, et al. Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature. 2010;466(7307):765–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kharas MG, et al. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med. 2010;16(8):903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Okabe M, et al. Translational repression determines a neuronal potential in Drosophila asymmetric cell division. Nature. 2001;411(6833):94–8.

    Article  CAS  PubMed  Google Scholar 

  66. NIH. http://www.clinicaltrials.gov.

  67. Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001;1(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  68. Rothwell PM, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376(9754):1741–50.

    Article  CAS  PubMed  Google Scholar 

  69. Rothwell PM, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31–41.

    Article  CAS  PubMed  Google Scholar 

  70. Shah S, et al. Trans-repression of beta-catenin activity by nuclear receptors. J Biol Chem. 2003;278(48):48137–45.

    Article  CAS  PubMed  Google Scholar 

  71. Jaiswal AS, et al. Beta-catenin-mediated transactivation and cell–cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene. 2002;21(55):8414–27.

    Article  CAS  PubMed  Google Scholar 

  72. Roccaro AM, et al. Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenstrom’s macroglobulinemia. Clin Cancer Res. 2008;14(6):1849–58.

    Article  CAS  PubMed  Google Scholar 

  73. Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010;16(12):3153–62.

    Article  CAS  PubMed  Google Scholar 

  74. Huang SM, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614–20.

    Article  CAS  PubMed  Google Scholar 

  75. You L, et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. 2004;64(15):5385–9.

    Article  CAS  PubMed  Google Scholar 

  76. You L, et al. Inhibition of Wnt-1 signaling induces apoptosis in beta-catenin-deficient mesothelioma cells. Cancer Res. 2004;64(10):3474–8.

    Article  CAS  PubMed  Google Scholar 

  77. DeAlmeida VI, et al. The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res. 2007;67(11):5371–9.

    Article  CAS  PubMed  Google Scholar 

  78. Hoey T, et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell. 2009;5(2):168–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian H. Heidel.

About this article

Cite this article

Heidel, F.H., Mar, B.G. & Armstrong, S.A. Self-renewal related signaling in myeloid leukemia stem cells. Int J Hematol 94, 109–117 (2011). https://doi.org/10.1007/s12185-011-0901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-0901-0

Keywords

Navigation