Skip to main content

Advertisement

Log in

Telomere dysfunction and cell cycle checkpoints in hematopoietic stem cell aging

  • Progress in Hematology
  • Hematopoietic stem cell aging
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Stem cells are believed to be closely associated with tissue degeneration during aging. Studies of human genetic diseases and gene-targeted animal models have provided evidence that functional decline of telomeres and deregulation of cell cycle checkpoints contribute to the aging process of tissue stem cells. Telomere dysfunction can induce DNA damage response via key cell cycle checkpoints, leading to cellular senescence or apoptosis depending on the tissue type and developmental stage of a specific stem cell compartment. Telomerase mutation and telomere shortening have been observed in a variety of hematological disorders, such as dyskeratosis congenital, aplastic anemia, myelodysplastic syndromes and leukemia, in which the hematopoietic stem cells (HSC) are a major target during the pathogenesis. Moreover, telomere dysfunction is able to induce both cell-intrinsic checkpoints and environmental factors limiting the self-renewal capacity and differentiation potential of HSCs. Crucial components in the cascade of DNA damage response, including ataxia telangiectasia mutated, CHK2, p53, p21 and p16/p19ARF, play important roles in HSC maintenance and self-renewal in the scenarios of both sufficient telomere reserve and dysfunctional telomere. Therefore, a further understanding of the molecular mechanisms underlying HSC aging may help identity new therapeutic targets for stem cell-based regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273:242–5.

    Article  PubMed  CAS  Google Scholar 

  2. Benveniste P, Cantin C, Hyam D, Iscove NN. Hematopoietic stem cells engraft in mice with absolute efficiency. Nat Immunol. 2003;4:708–13.

    Article  PubMed  CAS  Google Scholar 

  3. Matsuzaki Y, Kinjo K, Mulligan RC, Okano H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity. 2004;20:87–93.

    Article  PubMed  CAS  Google Scholar 

  4. Molofsky AV, Pardal R, Morrison SJ. Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol. 2004;16:700–7.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng T, Rodrigues N, Shen H, et al. Hematopoietic stem cell quiescence maintained by p21(cip1/waf1). Science. 2000;287:1804–8.

    Article  PubMed  CAS  Google Scholar 

  6. Qiu J, Takagi Y, Harada J, et al. Regenerative response in ischemic brain restricted by p21cip1/waf1. J Exp Med. 2004;199:937–45.

    Article  PubMed  CAS  Google Scholar 

  7. Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464:520–8.

    Article  PubMed  CAS  Google Scholar 

  8. de Haan G, Nijhof W, Van Zant G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood. 1997;89:1543–50.

    PubMed  Google Scholar 

  9. Ergen AV, Goodell MA. Mechanisms of hematopoietic stem cell aging. Exp Gerontol. 2010;45:286–90.

    Article  PubMed  CAS  Google Scholar 

  10. Rossi DJ, Jamieson CH, Weissman IL. Stems cells and the pathways to aging and cancer. Cell. 2008;132:681–96.

    Article  PubMed  CAS  Google Scholar 

  11. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL. The aging of hematopoietic stem cells. Nat Med. 1996;2:1011–6.

    Article  PubMed  CAS  Google Scholar 

  12. Ema H, Takano H, Sudo K, Nakauchi H. In vitro self-renewal division of hematopoietic stem cells. J Exp Med. 2000;192:1281–8.

    Article  PubMed  CAS  Google Scholar 

  13. Bell DR, Van Zant G. Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene. 2004;23:7290–6.

    Article  PubMed  CAS  Google Scholar 

  14. Chen J. Senescence and functional failure in hematopoietic stem cells. Exp Hematol. 2004;32:1025–32.

    Article  PubMed  CAS  Google Scholar 

  15. Dykstra B, de Haan G. Hematopoietic stem cell aging and self-renewal. Cell Tissue Res. 2008;331:91–101.

    Article  PubMed  Google Scholar 

  16. Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994;79:551–5. (see comments).

    Article  PubMed  CAS  Google Scholar 

  17. Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995;9:1149–63.

    Article  PubMed  CAS  Google Scholar 

  18. Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9:115–28.

    Article  PubMed  CAS  Google Scholar 

  19. Kozar K, Ciemerych MA, Rebel VI, et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell. 2004;118:477–91.

    Article  PubMed  CAS  Google Scholar 

  20. Cheng T, Scadden DT. Cell cycle entry of hematopoietic stem and progenitor cells controlled by distinct cyclin-dependent kinase inhibitors. Int J Hematol. 2002;75:460–5.

    Article  PubMed  CAS  Google Scholar 

  21. Cheng T. Cell cycle inhibitors in normal and tumor stem cells. Oncogene. 2004;23:7256–66.

    Article  PubMed  CAS  Google Scholar 

  22. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol. 2001;2:731–7.

    Article  PubMed  CAS  Google Scholar 

  23. Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.

    Article  PubMed  CAS  Google Scholar 

  24. Morgan DO. Principles of CDK regulation. Nature. 1995;374:131–4.

    Article  PubMed  CAS  Google Scholar 

  25. Stier S, Cheng T, Forkert R, et al. Ex vivo targeting of p21Cip1/Waf1 permits relative expansion of human hematopoietic stem cells. Blood. 2003;102(4):1260–6.

    Article  PubMed  CAS  Google Scholar 

  26. Hock H, Hamblen MJ, Rooke HM, et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature. 2004;431:1002–7.

    Article  PubMed  CAS  Google Scholar 

  27. Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science. 1996;272:877–80.

    Article  PubMed  CAS  Google Scholar 

  28. Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996;85:707–20.

    Article  PubMed  CAS  Google Scholar 

  29. Kiyokawa H, Kineman RD, Manova-Todorova KO, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell. 1996;85:721–32.

    Article  PubMed  CAS  Google Scholar 

  30. Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell. 1996;85:733–44.

    Article  PubMed  CAS  Google Scholar 

  31. Walkley CR, Fero ML, Chien WM, Purton LE, McArthur GA. Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2005;7(2):172–8.

    Article  PubMed  CAS  Google Scholar 

  32. Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 2006;7:667–77.

    Article  PubMed  CAS  Google Scholar 

  33. Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.

    Article  PubMed  CAS  Google Scholar 

  34. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.

    Article  PubMed  CAS  Google Scholar 

  35. Iwama A, Oguro H, Negishi M, et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity. 2004;21:843–51.

    Article  PubMed  CAS  Google Scholar 

  36. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–7.

    Article  PubMed  CAS  Google Scholar 

  37. Krishnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 2004;114:1299–307.

    PubMed  CAS  Google Scholar 

  38. Stepanova L, Sorrentino BP. A limited role for p16Ink4a and p19Arf in the loss of hematopoietic stem cells during proliferative stress. Blood. 2005;106:827–32.

    Article  PubMed  CAS  Google Scholar 

  39. Janzen V, Forkert R, Fleming HE, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443:421–6.

    PubMed  CAS  Google Scholar 

  40. Molofsky AV, Slutsky SG, Joseph NM, et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature. 2006;443:448–52.

    Article  PubMed  CAS  Google Scholar 

  41. Cheng T. Toward ‘SMART’ stem cells. Gene Ther. 2008;15:67–73.

    Article  PubMed  CAS  Google Scholar 

  42. Franklin DS, Godfrey VL, Lee H, et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev. 1998;12:2899–911.

    Article  PubMed  CAS  Google Scholar 

  43. Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol. 2000;20:6147–58.

    Article  PubMed  CAS  Google Scholar 

  44. Bai F, Pei XH, Godfrey VL, Xiong Y. Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis. Mol Cell Biol. 2003;23:1269–77.

    Article  PubMed  CAS  Google Scholar 

  45. Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol. 2004;6:436–42.

    Article  PubMed  CAS  Google Scholar 

  46. Yu J, Zhang L. The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun. 2005;331:851–8.

    Article  PubMed  CAS  Google Scholar 

  47. Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV. A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev. 2006;20:236–52.

    Article  PubMed  CAS  Google Scholar 

  48. Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27(Suppl 1):S71–83.

    Article  PubMed  CAS  Google Scholar 

  49. Lacorazza HD, Yamada T, Liu Y, et al. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell. 2006;9:175–87.

    Article  PubMed  CAS  Google Scholar 

  50. Liu Y, Elf SE, Miyata Y, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell. 2009;4:37–48.

    Article  PubMed  CAS  Google Scholar 

  51. Wang Y, Schulte BA, Larue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood. 2006;107(1):358–66.

    Article  PubMed  CAS  Google Scholar 

  52. Wikenheiser-Brokamp KA. Retinoblastoma family proteins: insights gained through genetic manipulation of mice. Cell Mol Life Sci. 2006;63:767–80.

    Article  PubMed  CAS  Google Scholar 

  53. Leoncini L, Bellan C, De Falco G. Retinoblastoma gene family expression in lymphoid tissues. Oncogene. 2006;25:5309–14.

    Article  PubMed  CAS  Google Scholar 

  54. Spike BT, Macleod KF. The Rb tumor suppressor in stress responses and hematopoietic homeostasis. Cell Cycle. 2005;4:42–5.

    Article  PubMed  CAS  Google Scholar 

  55. Walkley CR, Orkin SH. Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells. Proc Natl Acad Sci USA. 2006;103:9057–62.

    Article  PubMed  CAS  Google Scholar 

  56. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell. 2007;129:1081–95.

    Article  PubMed  CAS  Google Scholar 

  57. Daria D, Filippi MD, Knudsen ES, et al. The retinoblastoma tumor suppressor is a critical intrinsic regulator for hematopoietic stem and progenitor cells under stress. Blood. 2008;111:1894–902.

    Article  PubMed  CAS  Google Scholar 

  58. Viatour P, Somervaille TC, Venkatasubrahmanyam S, et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell. 2008;3:416–28.

    Article  PubMed  CAS  Google Scholar 

  59. Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12:446–51.

    Article  PubMed  CAS  Google Scholar 

  60. Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431:997–1002.

    Article  PubMed  CAS  Google Scholar 

  61. Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1:101–12.

    Article  PubMed  CAS  Google Scholar 

  62. Tothova Z, Gilliland DG. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell. 2007;1:140–52.

    Article  PubMed  CAS  Google Scholar 

  63. Yalcin S, Zhang X, Luciano JP, et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem. 2008;283:25692–705.

    Article  PubMed  CAS  Google Scholar 

  64. Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Zheng P. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med. 2008;205:2397–408.

    Article  PubMed  CAS  Google Scholar 

  65. Gan B, Sahin E, Jiang S, et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA. 2008;105:19384–9.

    Article  PubMed  CAS  Google Scholar 

  66. Gan B, DePinho RA. mTORC1 signaling governs hematopoietic stem cell quiescence. Cell Cycle. 2009;8:1003–6.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang J, Grindley JC, Yin T, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 2006;441:518–22.

    Article  PubMed  CAS  Google Scholar 

  68. Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441:475–82.

    Article  PubMed  CAS  Google Scholar 

  69. Ito K, Bernardi R, Morotti A, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453:1072–8.

    Article  PubMed  CAS  Google Scholar 

  70. Lee JY, Nakada D, Yilmaz OH, et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell. 2010;7:593–605.

    Article  PubMed  CAS  Google Scholar 

  71. Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106:661–73.

    Article  PubMed  CAS  Google Scholar 

  72. de Lange T. Protection of mammalian telomeres. Oncogene. 2002;21:532–40.

    Article  PubMed  Google Scholar 

  73. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–34.

    Article  PubMed  CAS  Google Scholar 

  74. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2100–10.

    Article  PubMed  CAS  Google Scholar 

  75. Liu D, O’Connor MS, Qin J, Songyang Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem. 2004;279:51338–42.

    Article  PubMed  CAS  Google Scholar 

  76. Passos JF, Saretzki G, von Zglinicki T. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res. 2007;35:7505–13.

    Article  PubMed  CAS  Google Scholar 

  77. Greider CW. Telomere length regulation. Annu Rev Biochem. 1996;65:337–65.

    Article  PubMed  CAS  Google Scholar 

  78. Chiu CP, Dragowska W, Kim NW, et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells. 1996;14:239–48.

    Article  PubMed  CAS  Google Scholar 

  79. Morrison SJ, Prowse KR, Ho P, Weissman IL. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity. 1996;5:207–16.

    Article  PubMed  CAS  Google Scholar 

  80. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood. 2003;102:517–20.

    Article  PubMed  CAS  Google Scholar 

  81. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature. 1999;402:551–5.

    Article  PubMed  CAS  Google Scholar 

  82. Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008;82:501–9.

    Article  PubMed  CAS  Google Scholar 

  83. Vulliamy T, Beswick R, Kirwan M, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA. 2008;105:8073–8.

    Article  PubMed  CAS  Google Scholar 

  84. Agarwal S, Loh YH, McLoughlin EM, et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature. 2010;464:292–6.

    Article  PubMed  CAS  Google Scholar 

  85. Marrone A, Stevens D, Vulliamy T, Dokal I, Mason PJ. Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency. Blood. 2004;104:3936–42.

    Article  PubMed  CAS  Google Scholar 

  86. Calado RT, Young NS. Telomere maintenance and human bone marrow failure. Blood. 2008;111:4446–55.

    Article  PubMed  CAS  Google Scholar 

  87. Scheinberg P, Cooper JN, Sloand EM, Wu CO, Calado RT, Young NS. Association of telomere length of peripheral blood leukocytes with hematopoietic relapse, malignant transformation, and survival in severe aplastic anemia. JAMA. 2010;304:1358–64.

    Article  PubMed  CAS  Google Scholar 

  88. Rando TA. The immortal strand hypothesis: segregation and reconstruction. Cell. 2007;129:1239–43.

    Article  PubMed  CAS  Google Scholar 

  89. Allsopp RC, Morin GB, Horner JW, DePinho R, Harley CB, Weissman IL. Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells. Nat Med. 2003;9:369–71.

    Article  PubMed  CAS  Google Scholar 

  90. Nitta E, Yamashita M, Hosokawa K, et al. Telomerase reverse transcriptase protects ATM-deficient hematopoietic stem cells from ROS-induced apoptosis through a telomere independent mechanism. Blood. 2011;117(16):4169–80.

    Article  PubMed  CAS  Google Scholar 

  91. Wright WE, Shay JW. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol. 1992;27:383–9.

    Article  PubMed  CAS  Google Scholar 

  92. Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997;91:25–34.

    Article  PubMed  CAS  Google Scholar 

  93. Blasco MA, Funk W, Villeponteau B, Greider CW. Functional characterization and developmental regulation of mouse telomerase RNA. Science. 1995;269:1267–70.

    Article  PubMed  CAS  Google Scholar 

  94. Rudolph KL, Chang S, Lee HW, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96:701–12.

    Article  PubMed  CAS  Google Scholar 

  95. Choudhury AR, Ju Z, Djojosubroto MW, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet. 2007;39:99–105.

    Article  PubMed  CAS  Google Scholar 

  96. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science. 1999;283:1321–5.

    Article  PubMed  CAS  Google Scholar 

  97. di d’Adda Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–8.

    Article  CAS  Google Scholar 

  98. Jaskelioff M, Muller FL, Paik JH, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2010;469(7328):102–6.

    Article  PubMed  CAS  Google Scholar 

  99. Shiloh Y, Kastan MB. ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res. 2001;83:209–54.

    Article  PubMed  CAS  Google Scholar 

  100. Takata H, Kanoh Y, Gunge N, Shirahige K, Matsuura A. Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol Cell. 2004;14:515–22.

    Article  PubMed  CAS  Google Scholar 

  101. Verdun RE, Crabbe L, Haggblom C, Karlseder J. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell. 2005;20:551–61.

    Article  PubMed  CAS  Google Scholar 

  102. Kishi S, Zhou XZ, Ziv Y, et al. Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks. J Biol Chem. 2001;276:29282–91.

    Article  PubMed  CAS  Google Scholar 

  103. Kishi S, Lu KP. A critical role for Pin2/TRF1 in ATM-dependent regulation. Inhibition of Pin2/TRF1 function complements telomere shortening, radiosensitivity, and the G(2)/M checkpoint defect of ataxia-telangiectasia cells. J Biol Chem. 2002;277:7420–9.

    Article  PubMed  CAS  Google Scholar 

  104. Wong KK, Maser RS, Bachoo RM, et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature. 2003;421:643–8.

    Article  PubMed  CAS  Google Scholar 

  105. Gire V, Roux P, Wynford-Thomas D, Brondello JM, Dulic V. DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J. 2004;23:2554–63.

    Article  PubMed  CAS  Google Scholar 

  106. Nalapareddy K, Choudhury AR, Gompf A, et al. CHK2-independent induction of telomere dysfunction checkpoints in stem and progenitor cells. EMBO Rep. 2010;11:619–25.

    Article  PubMed  CAS  Google Scholar 

  107. Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem. 2001;268:2764–72.

    Article  PubMed  CAS  Google Scholar 

  108. Artandi SE, Attardi LD. Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochem Biophys Res Commun. 2005;331:881–90.

    Article  PubMed  CAS  Google Scholar 

  109. Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97:527–38.

    Article  PubMed  CAS  Google Scholar 

  110. Flores I, Blasco MA. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS One. 2009;4:e4934.

    Article  PubMed  CAS  Google Scholar 

  111. Begus-Nahrmann Y, Lechel A, Obenauf AC, et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nat Genet. 2009;41:1138–43.

    Article  PubMed  CAS  Google Scholar 

  112. van Os R, Kamminga LM, Ausema A, et al. A limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells. 2007;25:836–43.

    Article  PubMed  CAS  Google Scholar 

  113. Ju Z, Choudhury AR, Rudolph KL. A dual role of p21 in stem cell aging. Ann N Y Acad Sci. 2007;1100:333–44.

    Article  PubMed  CAS  Google Scholar 

  114. Khoo CM, Carrasco DR, Bosenberg MW, Paik JH, Depinho RA. Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase-deficient mouse. Proc Natl Acad Sci USA. 2007;104:3931–6.

    Article  PubMed  CAS  Google Scholar 

  115. Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7:335–46.

    Article  PubMed  CAS  Google Scholar 

  116. Martinez P, Siegl-Cachedenier I, Flores JM, Blasco MA. MSH2 deficiency abolishes the anticancer and pro-aging activity of short telomeres. Aging Cell. 2009;8:2–17.

    Article  PubMed  CAS  Google Scholar 

  117. Siegl-Cachedenier I, Munoz P, Flores JM, Klatt P, Blasco MA. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev. 2007;21:2234–47.

    Article  PubMed  CAS  Google Scholar 

  118. Schaetzlein S, Kodandaramireddy NR, Ju Z, et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell. 2007;130:863–77.

    Article  PubMed  CAS  Google Scholar 

  119. Song Z, Wang J, Guachalla LM, et al. Alterations of the systemic environment are the primary cause of impaired B and T lymphopoiesis in telomere-dysfunctional mice. Blood. 2010;115:1481–9.

    Article  PubMed  Google Scholar 

  120. Jiang H, Schiffer E, Song Z, et al. Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc Natl Acad Sci USA. 2008;105:11299–304.

    Article  PubMed  CAS  Google Scholar 

  121. Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.

    Article  PubMed  CAS  Google Scholar 

  122. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 2007;5:e201.

    Article  PubMed  CAS  Google Scholar 

  123. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–4.

    Article  PubMed  CAS  Google Scholar 

  124. Pan L, Chen S, Weng C, et al. Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell. 2007;1:458–69.

    Article  PubMed  CAS  Google Scholar 

  125. Boyle M, Wong C, Rocha M, Jones DL. Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell. 2007;1:470–8.

    Article  PubMed  CAS  Google Scholar 

  126. Gan B, Hu J, Jiang S, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468:701–4.

    Article  PubMed  CAS  Google Scholar 

  127. Gurumurthy S, Xie SZ, Alagesan B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468:659–63.

    Article  PubMed  CAS  Google Scholar 

  128. Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 2010;468:653–8.

    Article  PubMed  CAS  Google Scholar 

  129. Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470:359–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC; 81090410), the National Basic Research Program of China (2011CB964800) and the National Science Fund for Outstanding Young Scholars (30825017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyu Ju or Tao Cheng.

About this article

Cite this article

Ju, Z., Zhang, J., Gao, Y. et al. Telomere dysfunction and cell cycle checkpoints in hematopoietic stem cell aging. Int J Hematol 94, 33–43 (2011). https://doi.org/10.1007/s12185-011-0882-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-0882-z

Keywords

Navigation