Skip to main content
Log in

Hemostatic changes before and during electrophysiologic study and radiofrequency catheter ablation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

We sought to investigate specific hemostasis activation markers during electrophysiologic study (EPS) with consequent radiofrequency catheter ablation (RFA). Sixty patients were studied prospectively during routine EPS with RFA for paroxysmal supraventricular tachycardia. Blood samples were drawn before the insertion of venous sheaths (T0), at the end of EPS (T1), and 30 min after completion of RFA (T2). To study coagulation and fibrinolytic and platelet activity, we measured concentrations of thrombin–antithrombin III (TAT), D-dimers (DD), plasminogen activator inhibitor type 1 (PAI-1), tissue-type plasminogen activator (t-PA), and circulating platelet aggregates. The results are expressed as median and show 95% confidence levels. Levels of DD increased from 0.24 mg/L at T0 to 0.37 mg/L at T1 (P < 0.001) and to 0.59 mg/L at T2 (P < 0.001). TAT levels increased from 5.29 μg/L at T0 to 35.80 μg/L at T1 (P < 0.001) and decreased to 26.30 μg/L at T2 (P < 0.001). PAI-1 concentration decreased from 30.10 μg/L at T0 to 26.4 μg/L at T1 (P < 0.001). t-PA at T2 increased to 5.10 μg/L from 4.75 μg/L at T1 (P = 0.001). No other differences between corresponding medians were statistically significant (P > 0.05). We found that concentrations of DD at T2 versus T1 depended on the number of radiofrequency energy applications (r S = 0.387; P = 0.002). Marked platelet activation was observed from the start of the procedure, without changes during the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hindricks G. The Multicentre European Radiofrequency Survey (MERFS): complications of radiofrequency catheter ablation of arrhythmias. Eur Heart J. 1993;14:1644–53.

    Article  CAS  PubMed  Google Scholar 

  2. Thakur RK, Klein GJ, Yee R, Guiraudon GM. Complications of radiofrequency catheter ablation: a review. Can J Cardiol. 1994;10:835–9.

    CAS  PubMed  Google Scholar 

  3. Calkins H, Yong P, Miller JM, Olshansky B, Carlson M, Saul JP, et al. Catheter ablation of accessory pathways, atrioventricular nodal reentrant tachycardia, and the atrioventricular junction: final results of a prospective, multicenter clinical trial. The Atakr Multicenter Investigators Group. Circulation. 1999;99:262–70.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou L, Keane D, Reed G, Ruskin J. Thromboembolic complications of cardiac radiofrequency catheter ablation: a review of the reported incidence, pathogenesis and current research directions. J Cardiovasc Electrophysiol. 1999;10:611–20.

    Article  CAS  PubMed  Google Scholar 

  5. Blanc JJ, Almendral J, Brignole M, Fatemi M, Gjesdal K, Gonzáles-Torrecilla E, et al. Consensus document on antithrombotic therapy in the setting of electrophysiological procedures. Europace. 2008;10:513–27.

    Article  PubMed  Google Scholar 

  6. Wu KK, Hoak JC. A new method for the quantitative detection of platelet aggregates in patients with arterial insufficiency. Lancet. 1974;2:924–6.

    Article  CAS  PubMed  Google Scholar 

  7. Hintye J. NCSS, PASS and GESS. Kaysville: NCSS; 2007. http://www.ncss.com.

  8. Huang SK. Radiofrequency catheter ablation of cardiac arrhythmias: appraisal of an evolving therapeutic modality. Am Heart J. 1989;118:1317–23.

    Article  CAS  PubMed  Google Scholar 

  9. Haines DE, Verow AF. Observations on electrode–tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium. Circulation. 1990;82:1034–8.

    Article  CAS  PubMed  Google Scholar 

  10. Huang SK, Graham AR, Wharton K. Radiofrequency catheter ablation of the left and right ventricles: anatomic and electrophysiologic observations. Pacing Clin Electrophysiol. 1988;11:449–59.

    Article  CAS  PubMed  Google Scholar 

  11. Katritsis DG, Hossein-Nia M, Anastasakis A, Poloniecki J, Holt DW, Camm AJ, et al. Myocardial injury induced by radiofrequency and low energy ablation: a quantitative study of CK isoforms, CK-MB, and troponin-T concentrations. Pacing Clin Electrophysiol. 1998;21:1410–6.

    Article  CAS  PubMed  Google Scholar 

  12. Chang DC, Reese TS. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J. 1990;58:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Oeveren W, Crijns HJ, Korteling BJ, Wegereef EW, Haan J, Tigchelaar I, Hoekstra A. Blood damage, platelet and clotting activation during application of radiofrequency or cryoablation catheters: a comparative in vitro study. J Med Eng Technol. 1999;23:20–5.

    Article  PubMed  Google Scholar 

  14. Nath S, Redick JA, Whayne JG, Haines DE. Ultrastructural observations in the myocardium beyond the region of acute coagulation necrosis following radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 1994;5:838–45.

    Article  CAS  PubMed  Google Scholar 

  15. Khairy P, Chauvet P, Lehmann J, Lambert J, Macle L, Tanguay JF, et al. Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation. 2003;107:2045–50.

    Article  PubMed  Google Scholar 

  16. Matsudaira K, Nakagawa H, Wittkampf FHM, Yamanashi WS, Imai S, Pitha JV, et al. High incidence of thrombus formation without impedance rise during radiofrequency ablation using electrode temperature control. Pacing Clin Electrophysiol. 2003;26:1227–37.

    Article  PubMed  Google Scholar 

  17. Ma J, Cheng G, Xu G, Weng S, Lu X. Effect of radiofrequency catheter ablation on endothelial function and oxidative stress. Acta Cardiol. 2006;61:339–42.

    Article  PubMed  Google Scholar 

  18. Jesel L, Morel O, Pynn S, Radulescu B, Grunebaum L, Freyssinet JM, et al. Radiofrequency catheter ablation of atrial flutter induces the release of platelet and leukocyte-derived procoagulant microparticles and a prothrombotic state. Pacing Clin Electrophysiol. 2009;32:193–200.

    Article  PubMed  Google Scholar 

  19. Sasano T, Hirao K, Yano K, Kawabata M, Okishige K, Isobe M. Delayed thrombogenesis following radiofrequency catheter ablation. Circ J. 2002;66:671–6.

    Article  PubMed  Google Scholar 

  20. Shuman MA, Levine SP. Thrombin generation and secretion of platelet factor 4 during blood clotting. J Clin Invest. 1978;61:1102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manolis AS, Melita-Manolis H, Vassilikos V, Maounis T, Chiladakis J, Christopoulou-Cokkinou V, Cokkinos DV. Thrombogenicity of radiofrequency lesions: results with serial D-dimer determinations. J Am Coll Cardiol. 1996;28:1257–61.

    Article  CAS  PubMed  Google Scholar 

  22. Dorbala S, Cohen AJ, Hutchinson LA, Menchavez-Tan E, Steinberg JS. Does radiofrequency ablation induce a prethrombotic state? Analysis of coagulation system activation and comparison to electrophysiologic study. J Cardiovasc Electrophysiol. 1998;9:1152–60.

    Article  CAS  PubMed  Google Scholar 

  23. Anfinsen OG, Gjesdal K, Brosstad F, Orning OM, Aass H, Kongsgaard E, Amlie JP. The activation of platelet function, coagulation, and fibrinolysis during radiofrequency catheter ablation in heparinized patients. J Cardiovasc Electrophysiol. 1999;10:503–12.

    Article  CAS  PubMed  Google Scholar 

  24. Anfinsen OG, Gjesdal K, Aass H, Brosstad F, Orning OM, Amlie JP. When should heparin preferably be administered during radiofrequency catheter ablation? Pacing Clin Electrophysiol. 2001;24:5–12.

    Article  CAS  PubMed  Google Scholar 

  25. Michelucci A, Antonucci E, Conti AA, Liotta AA, Fedi S, Padeletti L, et al. Electrophysiologic procedures and activation of the hemostatic system. Am Heart J. 1999;138:128–32.

    Article  CAS  PubMed  Google Scholar 

  26. Lee DSY, Dorian P, Downar E, Burns M, Yeo EL, Gold WL, et al. Thrombogenicity of radiofrequency ablation procedures: what factors influence thrombin generation? Europace. 2001;3:195–200.

    Article  CAS  PubMed  Google Scholar 

  27. Kozlovaite V, Grybauskas P, Cimbolaityte J, Mongirdiene A, Sileikis V, Zabiela V, et al. Coagulation alterations in treating arrhythmias with radiofrequency ablation. Medicina (Kaunas). 2009;45:706–11.

    Google Scholar 

  28. Hochholzer W, Schlittenhardt D, Arentz T, Stockinger J, Weber R, Bűrkle G, et al. Platelet activation and myocardial necrosis in patients undergoing radiofrequency and cryoablation of isthmus-dependent atrial flutter. Europace. 2007;9:490–5.

    Article  PubMed  Google Scholar 

  29. Maly J, Pecka M, Pleskot M, Cernohorsky D, Pidrman V, Stasek J, et al. Changes of the platelet activity in invasive cardiological procedures. Vnitr Lek. 1996;5:314–9.

    Google Scholar 

Download references

Acknowledgments

This study was supported by Internal Grant Agency Ministry of Health Czech Republic No. NA 6603-3.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Parizek.

About this article

Cite this article

Parizek, P., Haman, L., Pleskot, M. et al. Hemostatic changes before and during electrophysiologic study and radiofrequency catheter ablation. Int J Hematol 93, 452–457 (2011). https://doi.org/10.1007/s12185-011-0806-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-0806-y

Keywords

Navigation